Skip to main content
Log in

Recent Advances in Minimal Heat Processing of Fish: Effects on Microbiological Activity and Safety

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Thermal processing is one of the most common methods for achieving safe convenience fish products with an extended shelf life. Designing a thermal process for such products, typically in the range of 60–95 °C for 10 to 30 min, is challenging since the heat load required for inactivating target microorganisms may cause undesirable quality changes in the lipid and protein fraction. Concern about the safety of some fish products exists, particularly when considering the potential abuse caused by storage temperature. New methods that focus on minimal heating or rapid heating of fish products are therefore of vital importance. The main aim for new developments is to reduce the overall thermal load by reducing the temperature gradients in the product or by targeting specific potentially infected areas. In both cases, alternative technologies to conventional autoclaves, combi-steamers or water baths are used for enhanced heat transfer, thereby providing more rapid heating and avoiding unnecessarily high heat loads on part of the product. Dielectric heating, Shaka technology and surface pasteurisation are technologies that meet these approaches, and are now available for industrial applications. Minimal processing often relies on the use of multiple sub-lethal stresses or processes to achieve a similar level of microbial control such as that traditionally achieved by using a single lethal stress. Most minimally processed products require refrigerated storage and distribution to maintain food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agren, J. J., & Hanninen, O. (1993). Effects of cooking on the fatty acids of three freshwater fish species. Food Chemistry, 46, 377–382.

    CAS  Google Scholar 

  • Aguirre, J. S., Pin, C., Rodriguez, M. R., & de Fernando, G. D. G. (2009). Analysis of the variability in the number of viable bacteria after mild heat treatment of food. Applied and Environmental Microbiology, 75, 6992–6997.

    CAS  Google Scholar 

  • Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113, 321–329.

    CAS  Google Scholar 

  • Aitken, A., & Connell, J. J. (1979). Fish. In R. J. Priestley (Ed.), Effects of heating on Foodstuffs (pp. 219–254). Essex: Barking.

  • Al Holy, M., Wang, Y., Tang, J., & Rasco, B. (2005). Dielectric properties of salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurization frequencies. Journal of Food Engineering, 70, 564–570.

    Google Scholar 

  • Al Saghir, S., Thurner, K., Wagner, K. H., Frisch, G., Luf, W., Razzazi-Fazeli, E., et al. (2004). Effects of different cooking procedures on lipid quality and cholesterol oxidation of farmed salmon fish (Salmo salar). Journal of Agricultural and Food Chemistry, 52, 5290–5296.

    CAS  Google Scholar 

  • Anderson, W. A., McClure, P. J., BairdParker, A. C., & Cole, M. B. (1996). The application of a log-logistic model to describe the thermal inactivation of Clostridium botulinum 213B at temperatures below 121.1 degrees C. The Journal of Applied Bacteriology, 80, 283–290.

    CAS  Google Scholar 

  • Aro, T., Tahvonen, R., Mattila, T., Nurmi, J., Sivonen, T., & Kallio, H. (2000). Effects of season and processing on oil content and fatty acids of Baltic herring (Clupea harengus membras). Journal of Agricultural and Food Chemistry, 48, 6085–6093.

    CAS  Google Scholar 

  • Augustin, J. C., Carlier, V., & Rozier, J. (1998). Mathematical modelling of the heat resistance of Listeria monocytogenes. Journal of Applied Microbiology, 84, 185–191.

    CAS  Google Scholar 

  • Beaufort, A., Rudelle, S., Gnanou-Besse, N., Toquin, M. T., Kerouanton, A., Bergis, H., et al. (2007). Prevalence and growth of Listeria monocytogenes in naturally contaminated cold-smoked salmon. Letters in Applied Microbiology, 44, 406–411.

    CAS  Google Scholar 

  • Beaufort, A., Cornu, M., Beris, H., Lerdeux, A.-L., & Technical Guidance Document. (2008). On shelf-life studies for Listeria monocytogenes in ready-to-eat foods. Report: Afssa, Agence Française de Sécurité Sanitaire des Aliments (pp. 1–31). France: Maisons-Alfort.

    Google Scholar 

  • Böhme, K., Fernández-No, I., Gallardo, J., Cañas, B., and Calo-Mata, P. (2010) Safety assessment of fresh and processed seafood products by MALDI-TOF mass fingerprinting. Food and Bioprocess Technology. Review paper, doi:10.1007/s11974-010-0441-2.

  • Boyle, T. H., Craker, L. E., & Simon, J. E. (1991). Growing medium and fertilization regime influence growth and essential oil content of rosemary. HortScience, 26, 33–34.

    Google Scholar 

  • Breand, S., Fardel, G., Flandrois, J. P., Rosso, L., & Tomassone, R. (1997). A model describing the relationship between lag time and mild temperature increase duration. International Journal of Food Microbiology, 38, 157–167.

    CAS  Google Scholar 

  • Breand, S., Fardel, G., Flandrois, J. P., Rosso, L., & Tomassone, R. (1999). A model describing the relationship between regrowth lag time and mild temperature increase for Listeria monocytogenes. International Journal of Food Microbiology, 46, 251–261.

    CAS  Google Scholar 

  • Buchanan, R., Damert, W., Whiting, R., & van Schthorst, M. (1997). Use of epidemiological and food survey data to estimate a purposefully conservative dose–response relationship for L. monocytogenes levels and incidence of listeriaosis. Journal of Food Protection, 60, 918–922.

    Google Scholar 

  • Campanone, L. A., & Zaritzky, N. E. (2005). Mathematical analysis of microwave heating process. Journal of Food Engineering, 69, 359–368.

    Google Scholar 

  • Candela, M., Astiasaran, I., & Bello, J. (1997). Effects of frying and warmholding on fatty acids and cholesterol of sole (Solea solea), codfish (Gadus morhua) and hake (Merluccius merluccius). Food Chemistry, 58, 227–231.

    CAS  Google Scholar 

  • Candela, M., Astiasaran, I., & Bello, J. (1998). Deep-fat frying modifies high-fat fish lipid fraction. Journal of Agricultural and Food Chemistry, 46, 2793–2796.

    CAS  Google Scholar 

  • Casadei, M. A., de Matos, R. E., Harrison, S. T., & Gaze, J. E. (1998). Heat resistance of Listeria monocytogenes in dairy products as affected by the growth medium. Journal of Applied Microbiology, 84, 234–239.

    CAS  Google Scholar 

  • Cheftel, Cuq, & Lorient. (1985). Amino acids, peptides and proteins—VII modifications of food proteins through processing and storage. In O. R. Fennema (Ed.), Food Chemistry (pp. 332–369). New York: Marcel Decker Inc.

    Google Scholar 

  • Chen, S. D., Chen, H. H., Chao, Y. C., & Lin, R. S. (2009). Effect of batter formula on qualities of deep-fat and microwave fried fish nuggets. Journal of Food Engineering, 95, 359–364.

    CAS  Google Scholar 

  • Codex Alimentarius. Guideline for the validation of food safety control measure. CAC/GL 69—2008, 1–16. (2008)

  • Codex Alimentarius. Report on the thirty-fourth session of the Codex Committee on food hygiene (ALINORM 03/13) (2002) Rome, Italy, FAO/WHO.

  • Corradini, M. G., & Peleg, M. (2007). A Weibullian model for microbial injury and mortality. International Journal of Food Microbiology, 119, 319–328.

    Google Scholar 

  • Corry, J. E. L., James, S. J., Purnell, G., Barbedo-Pinto, C. S., Chochois, Y., Howell, M., et al. (2007). Surface pasteurisation of chicken carcasses using hot water. Journal of Food Engineering, 79, 913–919.

    Google Scholar 

  • Costa, L. C., Correia, A., Viegas, A., Sousa, J., & Henry, F. (2005). Dielectric characterisation of plastics for microwave oven applications. Cross-Disciplinary Applied Research in Materials Science and Technology, 480, 161–164.

    Google Scholar 

  • Dalgaard, P., Buch, P., & Silberg, S. (2002). Seafood Spoilage Predictor—Development and distribution of a product specific application software. International Journal of Food Microbiology, 73, 343–349.

    Google Scholar 

  • Datamonitor. Report: Changing Cooking Behaviors & Attitudes: Beyond Convenience. 2006.

  • Diaz, P., Nieto, G., Banon, S., & Garrido, M. D. (2009). Determination of shelf life of sous vide salmon (Salmo Salar) based on sensory attributes. Journal of Food Science, 74, 371–376.

    Google Scholar 

  • ECFF. (1996) Report: Guideline for the hygienic manufacture of chilled foods. European chilled food federation.

  • Edwards, J. S. A., & Hartwell, H. J. (2006). Hospital food service: A comparative analysis of systems and introducing the ‘Steamplicity’ concept. Journal of Human Nutrition and Dietetics, 19, 421–430.

    CAS  Google Scholar 

  • Eisner, M. (1988). Quality improvement through HTST and Rotation. In M. Eisner (Ed.), Introduction into the Technique and Technology of Rotary Sterilization (pp. 128–141). Milwaukee: Private Author’s Edition.

    Google Scholar 

  • Ersoy, B., & Ozeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry, 115, 419–422.

    CAS  Google Scholar 

  • European Commission. Harmonization of safety criteria for minimally processed foods. Martens, T. and Luchetti, A. 36–37. 1997. European Commission. Report: FAIR Concerted action CT96-1020.

  • Fagan, J. D., & Gormley, T. R. (2005). Effect of sous vide cooking, with freezing, on selected quality parameters of seven fish species in a range of sauces. European Food Research and Technology, 220, 299–304.

    CAS  Google Scholar 

  • Feldhusen, F. (2000). The role of seafood in bacterial foodborne diseases. Microbes and Infection, 2, 1651–1660.

    CAS  Google Scholar 

  • Gao, Y. L., & Jiang, H. H. (2005). Optimization of process conditions to inactivate Bacillus subtilis by high hydrostatic pressure and mild heat using response surface methodology. Biochemical Engineering Journal, 24, 43–48.

    CAS  Google Scholar 

  • Gao, Y. L., Ju, X. R., & Jiang, H. H. (2006). Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. Journal of Food Engineering, 77, 672–679.

    Google Scholar 

  • Garcia-Arias, M. T., Pontes, E. A., Linares, M. C. G., Garcia-Fernandez, M. C., & Sanchez-Muniz, F. J. (2003). Cooking-freezing-reheating (CFR) of sardine (Sardina pilchardus) fillets. Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chemistry, 83, 349–356.

    CAS  Google Scholar 

  • Garcia-Linares, M. C., Gonzalez-Fandos, E., Garcia-Fernandez, M. C., & Garcia-Arias, M. T. (2004). Microbiological and nutritional quality of sous vide or traditionally processed fish: Influence of fat content. Journal of Food Quality, 27, 371–387.

    CAS  Google Scholar 

  • Gastélum, G., Avila-Sosa, R., López-Malo, A., and Palou, E. (2010) Listeria innocua; Multi-target inactivation by thermo-sonication and vanillin. Food and Bioprocess Technology, doi:10.1007/s11947-010-0334-4.

  • Gaze, J. E., Boyd, A. R., & Shaw, H. L. (2006). Heat inactivation of Listeria monocytogenes Scott A on potato surfaces. Journal of Food Engineering, 76, 27–31.

    Google Scholar 

  • Gimenez, B., & Dalgaard, P. (2004). Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. Journal of Applied Microbiology, 96, 96–109.

    CAS  Google Scholar 

  • Gladyshev, M. I., Sushchik, N. N., Gubanenko, G. A., Demirchieva, S. M., & Kalachova, G. S. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chemistry, 96, 446–451.

    CAS  Google Scholar 

  • Gokoglu, N., Yerlikaya, P., & Cengiz, E. (2004). Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chemistry, 84, 19–22.

    CAS  Google Scholar 

  • González-Fandos, E., García-Linares, M. C., Villarino-Rodríguez, A., García-Arias, M. T., & Garcia-Fernández, M. C. (2004). Evaluation of the microbiological safety and sensory quality of rainbow trout (Oncorhynchus mykiss) processed by the sous vide method. Food Microbiology, 21, 193–201.

    Google Scholar 

  • González-Fandos, E., Villarino-Rodríguez, A., García-Arias, M. T., & Garcia-Fernández, M. C. (2005). Microbiological safety and sensory characteristics of salmon slices processed by the sous vide method. Food Control, 16, 77–85.

    Google Scholar 

  • Gormley, T. R., Neumann, T., Fagan, J. D., & Brunton, N. P. (2007). Taurine content of raw and processed fish fillets/portions. European Food Research and Technology, 225, 837–842.

    CAS  Google Scholar 

  • Graham, A. F., Mason, D. R., Maxwell, F. J., & Peck, M. W. (1997). Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Letters in Applied Microbiology, 24, 95–100.

    CAS  Google Scholar 

  • Greig, J. D., & Ravel, A. (2009). Analysis of foodborne outbreak data reported internationally for source attribution. International Journal of Food Microbiology, 130, 77–87.

    CAS  Google Scholar 

  • Guan, D., Cheng, M., Wang, Y., & Tang, J. (2004). Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science, 69, 30–37.

    Google Scholar 

  • Gunasekaran, N., Mallikarjunan, P., Eifert, J., & Sumner, S. (2005). Effect of fat content and temperature on dielectric properties of ground beef. Transactions of the ASAE, 48, 673–680.

    Google Scholar 

  • Hendrickx, M., Maesmans, G., De Cordt, S., Noronha, J., Van Loey, A., & Tobback, P. (1995). Evaluation of the integrated time-temperature effect in thermal processing of foods. Critical Reviews in Food Science and Nutrition, 35, 231–262.

    CAS  Google Scholar 

  • Hibbeln, J. R., Davis, J. M., Steer, C., Emmett, P., Rogers, I., Williams, C., et al. (2007). Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet, 369, 578–585.

    Google Scholar 

  • Hickson, M., Fearnley, L., Thomas, J., & Evans, S. (2007). Does a new steam meal catering system meet patient requirements in hospital? Journal of Human Nutrition and Dietetics, 20, 476–485.

    CAS  Google Scholar 

  • Hill, C., Cotter, P. D., Sleator, R. D., & Gahan, C.-G. M. (2002). Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. International Dairy Journal, 12, 273–283.

    Google Scholar 

  • Howgate, P. F., & Ahmed, S. F. (1972). Chemical and bacteriological changes in fish muscle during heating and drying at 30 °C. Journal of the Science of Food and Agriculture, 23, 615–627.

    CAS  Google Scholar 

  • Hu, X., & Mallikarjunan, P. (2005). Thermal and dielectric properties of shucked oysters. LWT Food Science and Technology, 38, 489–494.

    CAS  Google Scholar 

  • Huang, L. (2005). Dynamic measurement and mathematical modelling of the temperature history on hot dog surfaces during vacuum-steam-vacuum process. Journal of Food Engineering, 71, 109–118.

    Google Scholar 

  • Huang, L. H., & Juneja, V. K. (2003). Thermal inactivation of Escherichia coli O157: H7 in ground beef supplemented with sodium lactate. Journal of Food Protection, 66, 664–667.

    Google Scholar 

  • Icier, F., & Baysal, T. (2004). Dielectrical properties of food materials—1: Factors affecting and industrial uses. Critical Reviews in Food Science and Nutrition, 44, 465–471.

    CAS  Google Scholar 

  • ICMSF. (1996). Microorganisms in Foods, Microbiological Specifications of Food Pathogens. London: Blackie Academic and Professional.

    Google Scholar 

  • ICMSF. (2002). Micro-organisms in Foods: 7. Microbiological Testing in Food Safety Management (pp. 285–309). New York: Kluwer Academic Pulishing.

    Google Scholar 

  • James, C., Göksoy, E. O., Corry, J. E. L., & James, S. J. (2000). Surface pasteurisation of poultry meat using steam at atmospheric pressure. Journal of Food Engineering, 45, 111–117.

    Google Scholar 

  • Jeya Shakila, R., Jeyasekaran, G., Vijayakumar, A., & Sukumar, D. (2009). Microbiological quality of sous-vide cook chill fish cakes during chilled storage (3 degrees C). International Journal of Food Science & Technology, 44, 2120–2126.

    Google Scholar 

  • Johnston, M. D., & Brown, M. H. (2002). An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. Journal of Applied Microbiology, 92, 1066–1077.

    CAS  Google Scholar 

  • Juneja, V. K. (2003). Predictive model for the combined effect of temperature, sodium lactate, and sodium diacetate on the heat resistance of Listeria monocytogenes in beef. Journal of Food Protection, 66, 804–811.

    CAS  Google Scholar 

  • Juneja, V. K. (2006). Thermal treatments to control pathogens in muscle foods with particular reference to sous-vide products. In V. K. Juneja & J. P. Cherry (Eds.), Advances in Microbial Food Safety (pp. 87–108). Washington DC: American Chemical Society.

    Google Scholar 

  • Kennedy, J., Wall, P., Storrs, M., Devoluy, M.-C., & Cruveiller, P. (2007). Food safety challenges. In Safety Handbook: Microbiological Challenges (pp. 8–19). France: Bio-Mérieux Education.

    Google Scholar 

  • Kilinc, B., Cakli, S., & Turkkan, A. U. (2007). Effect of different cooking methods on chemical, microbiological and sensory quality of vacuum-packed Mediterranean anchovies (Engraulis encrasicholus). Archiv für Lebensmittelhygiene, 58, 191–196.

    CAS  Google Scholar 

  • Knap, R. P., & Durance, T. D. (1998). Thermal processing of suspended food particles in cans with end-over-end agitation. Food Research International, 9, 635–643.

    Google Scholar 

  • Kondjoyan, A., & Havet, M. (2003). Modelling heat transfer in a jet of hot air to decontaminate meat products. Sciences des Aliments, 23, 154–158.

    Google Scholar 

  • Kondjoyan, A., & Portanguen, S. (2008). Effect of superheated steam on the inactivation of Listeria innocua surface-inoculated onto chicken skin. Journal of Food Engineering, 87, 162–171.

    Google Scholar 

  • Kondjoyan, A., Mccann, M. S., Rouaud, O., Havet, M., Foster, A. M., Swain, M., et al. (2006a). Modelling coupled heat-water transfers during a decontamination treatment of the surface of solid food products by a jet of hot air—II. Validations of product surface temperature and water activity under fast transient air temperature conditions. Journal of Food Engineering, 76, 63–69.

    Google Scholar 

  • Kondjoyan, A., Rouaud, O., Mccann, M. S., Havet, M., Foster, A., Swain, M., et al. (2006b). Modelling coupled heat-water transfers during a decontamination treatment of the surface of solid food products by a jet of hot air. I. Sensitivity analysis of the model and first validations of product surface temperature under constant air temperature conditions. Journal of Food Engineering, 76, 53–62.

    Google Scholar 

  • Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT Food Science and Technology, 41, 1210–1222.

    CAS  Google Scholar 

  • Koseki, S., Mizuno, Y., & Yamamoto, K. (2008). Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk. Food Microbiology, 25, 288–293.

    CAS  Google Scholar 

  • Kozempel, M. F., Marshall, D. L., Radewonuk, E. R., Scullen, O. J., & Bal’a, M. F. A. (2001). A rapid surface intervention process to kill Listeria innocua on catfish using cycles of vacuum and steam. Journal of Food Science, 66, 1012–1016.

    CAS  Google Scholar 

  • Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascolar disease. Circulation, 106, 2747–2757.

    Google Scholar 

  • Krokida, M. K., Panagiotou, N. M., Maroulis, Z. B., & Saravacos, G. D. (2001). Thermal conductivity: Literature data compilation for foodstuffs. International Journal of Food Properties, 4, 111–137.

    CAS  Google Scholar 

  • Lappi, V. R., Thimothe, J., Nightingale, K. K., Gall, K., Scott, V. N., & Wiedmann, M. (2004). Longitudinal studies on Listeria in smoked fish plants: Impact of intervention strategies on contamination patterns. Journal of Food Protection, 67, 2500–2514.

    Google Scholar 

  • Larsen, D., Quek, S. Y., & Eyres, L. (2010). Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chemistry, 119, 785–790.

    CAS  Google Scholar 

  • Laursen, B. G., Byrne, D. V., Kirkegaard, J. B., & Leisner, J. J. (2009). Lactic acid bacteria associated with a heat-processed pork product and sources of variation affecting chemical indices of spoilage and sensory characteristics. Journal of Applied Microbiology, 106, 543–553.

    CAS  Google Scholar 

  • Leistner, L. (1995). Principles and applications of hurdle technology. In G. W. Gould (Ed.), New Methods of Food Preservation (pp. 1–21). Glasgow: Blackie Acedemic & Professional.

    Google Scholar 

  • Lindstrom, M., Nevas, M., Hielm, S., Lahteenmaki, L., Peck, M. W., & Korkeala, H. (2003). Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Applied and Environmental Microbiology, 69, 4029–4036.

    Google Scholar 

  • Lorentzen, G., Ytterstad, E., Olsen, R. L., & Skjerdal, T. (2010). Thermal inactivation and growth potential of Listeria innocua in rehydrated salt-cured cod prepared for ready-to-eat products. Food Control, 21, 1121–1126.

    Google Scholar 

  • Lou, Y., & Yousef, A. E. (1999). Characterization of Listeria monocytogenes important to food processors. In E. T. Ryser & E. H. Marth (Eds.), Listeria, Listeriosis, and Food Safety (pp. 131–225). New York: Marcel Dekker.

    Google Scholar 

  • Mahmoud, E. A., Dostalova, J., Lukesova, D., & Dolezal, M. (2009). Oxidative changes of lipids during microwave heating of minced fish flesh in catering. Czech Journal of Food Sciences, 27, S17–S19.

    Google Scholar 

  • Malakar, P. K., Barker, G. C., Zwietering, M. H., & van’t Riet, K. (2003). Relevance of microbial interactions to predictive microbiology. International Journal of Food Microbiology, 84, 263–272.

    CAS  Google Scholar 

  • McKenna, B. M., Lyng, J., Brunton, N., & Shirsat, N. (2006). Advances in radio frequency and ohmic heating of meats. Journal of Food Engineering, 77, 215–229.

    Google Scholar 

  • McMeekin, T. A., Olley, J., Ratkowsky, D. A., & Ross, T. (2002). Predictive microbiology: Towards the interface and beyond. International Journal of Food Microbiology, 73, 395–407.

    CAS  Google Scholar 

  • Mehauden, K., Cox, P. W., Bakafis, S., Simmons, M. J. H., Tucker, G. S., & Fryer, P. J. (2007). A novel method to evaluate the applicability of time temperature integrators to different temperature profiles. Innovative Food Science & Emerging Technologies, 8, 507–514.

    Google Scholar 

  • Mehauden, K., Bakalis, S., Cox, P. W., Fryer, P. J., & Simmons, M. J. H. (2008). Use of time temperature integrators for determining process uniformity in agitated vessels. Innovative Food Science & Emerging Technologies, 9, 385–395.

    Google Scholar 

  • Morgan, A. I., Goldberg, N., Radewonuk, E. R., & Scullen, O. J. (1996). Surface pasteurization of raw poultry meat by steam. Lebensmittel-Wissenschaft und Technologie, 29, 447–451.

    CAS  Google Scholar 

  • NACMCF (U.S.National Advisory Committee on Microbiological Criteria for Foods). (1992). Microbiological criteria for raw molluscan shellfish. Journal of Food Protection, 55, 463–480.

    Google Scholar 

  • Naveh, D., & Kopelman, I. J. (1980). Effect of some processing parameters on the heating transfer coefficients in a rotating autoclave. Journal of Food Processing and Preservation, 4, 67–77.

    Google Scholar 

  • Nicolaï, B. M. Thesis/Dissertation: Modelling and uncertainty propagation analysis of thermal food processes. 1994. Katholieke Universiteit Leuven.

  • Nilsson, L., Gram, L., & Bremmer, H. A. (2002). Improving the control of pathogens in fish products. In Safety and Quality Issues in Fish Processing (pp. 54–84). Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  • O’ Grady, J., Sedano-Balbás, S., Maher, M., Smith, T., & Barry, T. (2008). Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiology, 25, 75–84.

    Google Scholar 

  • O’ Grady, J., Ruttledge, M., Sedano-Balbás, S., Smith, T. J., Barry, T., & Maher, M. (2009). Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiology, 26, 4–7.

    Google Scholar 

  • Ofstad, R. Thesis/Dissertation: Microstructure and liquid-holding capacity in cod (Gadus morhua) and salmon (Salmo salar) muscle; effects of heating. 1–174. 1995. University of Tromsø, Institute of Medical Biology.

  • Ofstad, R., Kidman, S., Myklebust, R., & Hermanson, A. M. (1993). Liquid holding capacity and structural changes during heating of fish muscle; cod (Gadus morhua) and salmon (Salmo salar). Food Structure, 12, 163–174.

    Google Scholar 

  • Ofstad, R., Kidman, S., Myklebust, R., Olsen, R. L., & Hermansson, A. M. (1995). Factors influencing liquid-holding capacity and structural changes during heating of comminuted cod (Gadus morhua) muscle. Academic Press Limited, 29, 173–183.

    Google Scholar 

  • Ohlsson, T. (1980). Optimal sterilization temperatures for sensory quality in cylindrical containers. Journal of Food Science, 45, 1517–1521.

    Google Scholar 

  • Ohlsson, T., & Bengtsson, N. (2001). Microwave Technology in Foods. Advances in Food and Nutrition Research 43, 65–140

  • Ohlsson, T. (2002). Minimal processing of foods with thermal methods. In T. Ohlsson and N. Bengtsson (Eds.) Minimal Processing Technologies in the Food Industry (pp. 4–33). Cambridge: Woodhead Publishing Limited.

  • Ozer, N. P., & Demirci, A. (2006). Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41, 354–360.

    CAS  Google Scholar 

  • Paoli, G. C., Bhunia, A. K., & Bayles, D. O. (2005). Listeria monocytogenes. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne Pathogens (pp. 295–324). UK: Caister Academic Press.

    Google Scholar 

  • Parry, D. A. (1970). Fish as food. In R. A. Lawrie (Ed.), Proteins as Human Foods (p. 365). London: Butterworths.

    Google Scholar 

  • Pasquali, F., Fabbri, A., Cevoli, C., Manfreda, G., & Franchini, A. (2010). Hot air treatment for surface decontamination of table eggs. Food Control, 21, 431–435.

    CAS  Google Scholar 

  • Peleg, M. (2006). It’s time to revise thermal processing theories. Food Technology, 60, 92.

    Google Scholar 

  • Pflug, I. J. (2010). Science, practice, and human errors in controlling Clostridium botulinum in heat-preserved food in hermetic containers. Journal of Food Protection, 73, 993–1002.

    Google Scholar 

  • Rajan, S., Pandrangi, S., Balasubramaniam, V. M., & Yousef, A. E. (2006). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT Food Science and Technology, 39, 844–851.

    CAS  Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47, 69–112.

    CAS  Google Scholar 

  • Rhodehamel, E. J. (1992). FDA’s concerns with sous vide processing. Food Technology, 46, 73–76.

    Google Scholar 

  • Richardson, P. (2004). Improving the thermal processing of foods. Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Romano, V. R., Marra, F., & Tammaro, U. (2005). Modelling of microwave heating of foodstuff: Study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 71, 233–241.

    Google Scholar 

  • Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of Human Nutrition and Dietetics, 17, 449–459.

    CAS  Google Scholar 

  • Ryckaert, V. G., Claes, J. E., & Van Impe, J. F. (1999). Model-based temperature control in ovens. Journal of Food Engineering, 39, 47–58.

    Google Scholar 

  • Ryynänen, S. Thesis/Dissertation: Microwave heating uniformity of multicomponent prepared foods. 2002. University of Helsinki, Department of Food Technology.

  • Ryynanen, S., Risman, P. O., & Ohlsson, T. (2004). Hamburger composition and microwave heating uniformity. Journal of Food Science, 69, M187–M196.

    Google Scholar 

  • Sakai, N., Mao, W., Koshima, Y., & Watanabe, M. (2005). A method for developing model food system in microwave heating studies. Journal of Food Engineering, 66, 525–531.

    Google Scholar 

  • Schellekens, W. and Martens, T. FLAIR. “Sous vide” coking. Report: Part I: Scientific literature review. Publication NO EUR 15018 EN of the commission of the European Communities, Directorate General XII Research and Development. 1993. Brussels-Luxemburg.

  • Severgnini, M., Cremonesi, P., Consolandi, C., De Bellis, G., Castiglioni, B. (2010) Advances in DNA microarray technology for the detection of foodborne pathogens. Food and Bioprocess Technology. Review paper, doi:10.1007/s11947-010-0430-5.

  • Sheard, M. A., & Rodger, C. (1995). Optimum heat treatments for ‘Sous Vide’ Cook-Chill products. Food Control, 6, 53–56.

    Google Scholar 

  • Simunovic, J. Conference Proceeding: Continuous flow microwave sterilization: Tools and procedures for process design and validation. Britt, I. 28, 7. 2009. San Antonio, Texas, Institute for Thermal processing specialists (IFTPS). 28th Annual Conference on the Responsibilities of thermal processing specialists. 3-3-0009.

  • Sioen, I., Haak, L., Raes, K., Hermans, C., De Henauw, S., De Smet, S., et al. (2006). Effects of pan-frying in margarine and olive oil on the fatty acid composition of cod and salmon. Food Chemistry, 98, 609–617.

    CAS  Google Scholar 

  • Skåra, T., Rosnes, J. T., & Sivertsvik, M. (2002). Safe and sound: Minimally processed fish products. Food Technology International, 2, 75–76.

    Google Scholar 

  • Skipnes, D. Conference Proceeding: Heating mechanisms in Shaka processing. 13. 2009. Guelph, Canada, Institute for thermal processing specialists (IFTPS). Harmonization of standards in thermal processing. Tucker, Gary. 28-10-2009.

  • Skipnes, D. and Pfeiffer, T. Conference Proceeding: Radio-frequency heating of food in a water bath. Building a FEM model of the process. Hertog, M. L. A. T. M and Nicolaï, B. M. 2005. Leuven, BE, The third international symposium on: Applications of modelling as an innovative technology in the agri-food chain, MODEL-IT 2005. Acta Horticularae No. 674. 29-5-2005.

  • Skipnes, D., van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus mohua). Journal of Food Engineering, 85, 51–58.

    CAS  Google Scholar 

  • Sommers, C. H., Geveke, D. J., & Fan, X. (2008). Inactivation of Listeria innocua on frankfurters that contain potassium lactate and sodium diacetate by flash pasteurization. Journal of Food Science, 73, M72–M74.

    CAS  Google Scholar 

  • Stephens, P. J., Cole, M. B., & Jones, M. V. (1994). Effect of heating rate on the thermal inactivation of Listeria monocytogenes. The Journal of Applied Bacteriology, 77, 702–708.

    CAS  Google Scholar 

  • Tanaka, F., Mallikarjunan, P., & Hung, Y. C. (1999). Dielectric properties of shrimp related to microwave frequencies: From frozen to cooked stages. Journal of Food Process Engineering, 22, 455–468.

    Google Scholar 

  • Tokarskyy, O., Marshall, D. L., Schilling, M. W., & Willeford, K. O. (2009). Comparison of methods to verify end point cooking temperature of channel catfish (Ictalurus punctatus) fillets. Journal of Muscle Foods, 20, 325–340.

    CAS  Google Scholar 

  • Tome, E., Gibbs, P. A., & Teixeira, P. C. (2008). Growth control of Listeria innocua 2030c on vacuum-packaged cold-smoked salmon by lactic acid bacteria. International Journal of Food Microbiology, 121, 285–294.

    CAS  Google Scholar 

  • Tome, E., Todorov, S. D., Gibbs, P. A., & Teixeira, P. C. (2009). Partial characterization of nine bacteriocins produced by lactic acid bacteria isolated from cold-smoked salmon with activity against Listeria monocytogenes. Food Biotechnology, 23, 50–73.

    CAS  Google Scholar 

  • Tucker, G., Hanby, E., & Brown, H. (2009). Development and application of a new time-temperature integrator for the measurement of P-values in mild pasteurisation processes. Food and Bioproducts Processing, 87, 23–33.

    CAS  Google Scholar 

  • Turkkan, A. U., Cakli, S., & Kilinc, B. (2008). Effects of cooking methods on the proximate composition and fatty acid composition of seabass (Dicentrarchus labrax, Linnaeus, 1758). Food and Bioproducts Processing, 86, 163–166.

    CAS  Google Scholar 

  • Turkkan, A. U., Cakli, S., & Kilinc, B. (2010). Changes in quality during storage of vacuum-packed sea bass (Dicentrarchus Labrax, Linnaeus, 1758) cooked by different methods. Journal of Muscle Foods, 21, 1–14.

    CAS  Google Scholar 

  • Valdramidis, V. P., Belaubre, N., Zuniga, R., Foster, A. M., Havet, M., Geeraerd, A. H., et al. (2005). Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination. International Journal of Food Microbiology, 100, 261–274.

    CAS  Google Scholar 

  • Valdramidis, V. P., Péroval, C., Portanguen, S., Verhulst, A., Van Impe, J. F., Geeraerd, A. H., et al. (2008). Quantitative evaluation of thermal inactivation kinetics of free-floating versus surface-attached Listeria innocua cells. Food and Bioprocess Technology, 1, 285–296.

    Google Scholar 

  • van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74, 139–159.

    Google Scholar 

  • Van Loey, A., Guiavarac’h, Y., Claeys, W., & Hendrickx, M. (2004). The use of time-temperature integrators (TTIs) to validate thermal processes. In P. Richardson (Ed.), Improving the Thermal Processing of Foods (pp. 365–379). Cambridge: Woodhead publishing Ltd.

    Google Scholar 

  • Verboven, P., Scheerlinck, N., De Baerdemaeker, J., & Nicolai, B. M. (2000). Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. Journal of Food Engineering, 43, 61–73.

    Google Scholar 

  • Walden, R. (2008). The Zintec ShakaTM retort and product quality. In p. Richardson (Ed.) In-pack processed foods. Improving quality (pp 86–101). Cambridge: Woodhead publishing Ltd.

  • Walden, R. (2009). Conference Proceeding: Energy saving strategies for batch retorts. 13–14. Guelph, Canada, Institute for thermal processing specialists (IFTPS). Harmonization of standards in thermal processing. Tucker, Gary. 28-10-2009.

  • Walden, R. and Ferguson, R. J. (2005) Patent: Improved can processing. Zinetec Ltd. Application no: WO2005/082173 A3, Patent no: EP1765096-2007-03-28, pp1–8. GB.

  • Wang, Y., Tang, J. M., Rasco, B., Kong, F. B., & Wang, S. J. (2008). Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering, 87, 236–246.

    Google Scholar 

  • Washington, D. C. N. (2005). Considerations for establishing safety-based consume-by date labels for refrigerated ready-to-eat foods. Journal of Food Protection, 68, 1761–1775.

    Google Scholar 

  • Weber, J., Bochi, V. C., Ribeiro, C. P., Victorio, A. D., & Emanuelli, T. (2008). Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106, 140–146.

    CAS  Google Scholar 

  • Wong, H. C., Peng, P. Y., Lan, S. L., Chen, Y. C., Lu, K. H., Shen, C. T., et al. (2002). Effects of heat shock on the thermotolerance, protein composition, and toxin production of Vibrio parahaemolyticus. Journal of Food Protection, 65, 499–507.

    CAS  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., Welt, B. A., Ralat, M., & Marshall, M. R. (2009). Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, 116, 828–835.

    CAS  Google Scholar 

  • Yamauchi, K. (1972). Effect of heat treatment on the development of oxidative rancidity in meats and its isolated tissue fraction. Bulletin of the Faculty of Agriculture of Miyazaki University., 19, 147.

    CAS  Google Scholar 

  • Zhang, H., Datta, A. K., Taub, I. A., & Doona, C. (2001). Electromagnetics, heat transfer, and thermokinetics in microwave sterilization. AIChE Journal, 47, 1957–1968.

    CAS  Google Scholar 

  • Zhang, J., Zhang, M., Shan, L., & Fang, Z. (2007). Microwave-vacuum heating parameters for processing savoury crisp bighead carp (Hypophthalmichthys nobilis) slices. Journal of Food Engineering, 79, 885–891.

    Google Scholar 

  • Zwietering, M. H. (2002). Quantification of microbial quality and safety in minimally processed foods. International Dairy Journal, 12, 263–271.

    Google Scholar 

Download references

Acknowledgement

This work is part of the project “Innovative and Safe Seafood—Processing, Hygiene, Spectroscopy” funded by the Research Council of Norway (NFR project no. 186905) and also supported by the Norconserv Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan T. Rosnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosnes, J.T., Skåra, T. & Skipnes, D. Recent Advances in Minimal Heat Processing of Fish: Effects on Microbiological Activity and Safety. Food Bioprocess Technol 4, 833–848 (2011). https://doi.org/10.1007/s11947-011-0517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0517-7

Keywords

Navigation