Skip to main content

Advertisement

Log in

Effect of Addition of Halloysite Nanoclay and SiO2 Nanoparticles on Barrier and Mechanical Properties of Bovine Gelatin Films

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Casting method was used to prepare bovine gelatin based bio-nanocomposite films with halloysite nanoclay and nano-SiO2 as the reinforcing materials. The composition included gelatin with 20% (w/w) of glycerol (as plasticizer) compounded with halloysite nanoclay and nano-SiO2 (0%, 2%, 3%, 4%, 5% w/w), respectively. Both types of nanocomposite films showed better mechanical and water solubility than the pristine gelatin films. On comparison with the control, increase in the nanoparticles content resulted in higher tensile strength (9.19 to 13.39 and 12.22 MPa in nanoclay and nano-SiO2, respectively) and elastic modulus (1.32 to 2.99 and 3.02 MPa% in nanoclay and nano-SiO2, respectively) with lower elongation at break (80.80 to 55.72 and 40.31% in nanoclay and nano-SiO2, respectively) and water solubility (85.99 to 69.67 and 69.59% in nanoclay and nano-SiO2, respectively). Even though a decrease in water vapor permeability was recorded, it was statistically non-significant (1.94 to 1.50 and 1.73 g mm/m2 h kPa in nanoclay and nano-SiO2, respectively). Studies on the heat sealing and peel seal test, conducted to determine the seal strength of the nanocomposite films, revealed lower seal strength compared to control (739.59 to 304.95 and 397.85 N/m in nanoclay and nano-SiO2, respectively). Between the two nanomaterials used, halloysite nanoclay showed the best results in terms of mechanical properties. The results obtained support the concept of nanocomposite technology and can be employed to improve the barrier and mechanical properties of bovine gelatin films with high potential to be used for food packaging purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adame, D., & Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42, 545–552.

    Article  CAS  Google Scholar 

  • Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78, 941–946.

    Article  CAS  Google Scholar 

  • ASTM (1980). Standard test methods for tensile properties of thin plastic sheeting, Method D882-80a. Annual book of ASTM standards (pp. 380–388). Philadelphia: American Society for Testing and Materials.

  • ASTM (1995). Standard test method for water vapor transmission of materials. Designation E96-95. Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials

  • Bae, H. J., Darby, D. O., Kimmel, R. M., Park, H. J., & Whiteside, W. S. (2009). Effects of transglutaminase-induced cross-linking on properties of fish gelatin–nanoclay composite film. Food Chemistry, 114, 180–189.

    Article  CAS  Google Scholar 

  • Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17–25.

    Article  CAS  Google Scholar 

  • Bharadwaj, R. K. (2001). Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34, 9189–9192.

    Article  CAS  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, doi:10.1007/s11947-010-0434-1, in press.

  • CFIA, Canadian Food Inspection Agency (2005). http://www.inspection.gc.ca/english/anima/heasan/pol/ie-2005-9e.shtml. Accessed on 22.08.2010.

  • Chau, C. F., Wu, S. H., & Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology, 18, 269–280.

    Article  CAS  Google Scholar 

  • da Silva, M. A., Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: effect of the plasticizer concentration. Carbohydrate Polymers, 77, 736–742.

    Article  Google Scholar 

  • de Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Research International, 42, 1240–1253.

    Article  Google Scholar 

  • Dean, K., & Yu, L. (2005). Biodegradable protein-nanocomposites. In R. Smith (Ed.), Biodegradable polymers for industrial application (pp. 289–309). Boca Raton: CRC.

    Chapter  Google Scholar 

  • De Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal, and formaldehyde. Food Hydrocolloids, 18, 717–726.

    Article  Google Scholar 

  • De Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45, 189–194.

    Article  Google Scholar 

  • De Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. C. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92, 448–453.

    Article  Google Scholar 

  • Federal Register (2008). http://www.federalregister.gov/articles/2008/01/18/E8-883. Accessed on 22.08.2010.

  • Gomez-Guillen, M. C., Perez-Mateos, M., Gomez-Estaca, J., Lopez-Caballero, E., Gimenez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, 20, 3–16.

    Article  CAS  Google Scholar 

  • Jia, X., Li, Y., Cheng, Q., Zhang, S., & Zhang, B. (2007). Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. European Polymer Journal, 43, 1123–1131.

    Article  CAS  Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., & Tanaka, M. (2006). Characterization of edible films from skin gelatin of brownstripe red snapper and big eye snapper. Food Hydrocolloids, 20, 492–501.

    Article  CAS  Google Scholar 

  • Krochta, J. M., & De Mulder-Johnston, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 51, 61–74.

    Google Scholar 

  • Lamnawar, K., Vion-Loisel, F., & Maazouz, A. (2010). Rheological, morphological, and heat seal properties of linear low density polyethylene and cyclo olefine copolymer (LLDPE/COC) blends. Journal of Applied Polymer Science, 116, 2015–2022.

    CAS  Google Scholar 

  • Lee, J. H., Jung, D., Hong, C. E., Rhee, K. Y., & Advani, S. G. (2005). Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Composites Science and Technology, 65, 1996–2002.

    Article  CAS  Google Scholar 

  • Lu, Y., Weng, L., & Zhang, L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 5, 1046–1051.

    Article  CAS  Google Scholar 

  • Messersmith, P. B., & Giannelis, E. P. (1995). Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. Journal of Polymer Science. Part A: Polymer Chemistry, 33, 1047–1057.

    Article  CAS  Google Scholar 

  • Moraru, C., Huang, Q., Takhistov, P., Dogan, H., & Kokini J. (2009). Food nanotechnology: current developments and future prospects. IUFoST World Congress Book: Global Issues in Food Science and Technology (pp. 369–399). Amsterdam: Elsevier.

  • Neethirajan, S., & Jayas, D.S. (2010). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, doi:10.1007/s11947-010-0328-2, in press.

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  • Nielsen, L. E. (1967). Models for the permeability of filled polymer systems. Journal of Macromolecular Science. Part A: Pure and Applied Chemistry, 1, 929–942.

    Article  CAS  Google Scholar 

  • Park, S. K., Rhee, C. O., Bae, D. H., & Hettiarachchy, N. S. (2001). Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono-α-lactone. Journal of Agricultural and Food Chemistry, 49, 2308–2312.

    Article  CAS  Google Scholar 

  • Park, H. M., Lee, W. K., Park, C. Y., Cho, W. J., & Ha, C. S. (2003). Environmentally friendly polymer hybrids. Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. Journal of Materials Science, 38, 909–915.

    Article  CAS  Google Scholar 

  • Pranoto, Y., Lee, C. M., & Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and k-carrageenan. LWT Food Science and Technology, 40, 766–774.

    Article  CAS  Google Scholar 

  • Rhim, J. W., Lee, J. H., & Kwak, H. S. (2005). Mechanical and barrier properties of soy protein and clay mineral composite films. Food Science and Biotechnology, 14, 112–116.

    CAS  Google Scholar 

  • Rhim, J. W., Hong, S. I., Park, H. M., & Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54, 5814–5822.

    Article  CAS  Google Scholar 

  • Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90, 531–539.

    Article  CAS  Google Scholar 

  • Romero-Bestida, C. A., Bello-Perez, L. A., Garcia, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235–244.

    Article  Google Scholar 

  • SCENIHR (2006). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). European Commission.

  • Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18, 84–95.

    Article  CAS  Google Scholar 

  • Sothornvit, R., Hong, S. I., An, D. J., & Rhim, J. W. (2010). Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT Food Science and Technology, 43, 279–284.

    Article  CAS  Google Scholar 

  • SSC (2003). The Scientific Steering Committee Updated Opinion on the Safety with Regard to TSE Risks of Gelatine Derived from Ruminant Bones or Hides. http://ec.europa.eu/food/fs/sc/ssc/out321_en.pdf, Accessed on 8 September 2010.

  • Tang, X. Z., Alavi, S., & Herald, T. J. (2008a). Barrier and mechanical properties of starch–clay nanocomposite films. Cereal Chemistry, 85, 433–439.

    Article  CAS  Google Scholar 

  • Tang, S., Zou, P., Xiong, H., & Tang, H. (2008b). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72, 521–526.

    Article  CAS  Google Scholar 

  • Tetsuya, T., Hashimoto, Y., Ishiaku, U. S., Mizoguchi, M., Leong, Y. W., & Hamada, H. (2006). Effect of heat-sealing temperature on the properties of OPP/CPP heat seals. Part II. Crystallinity and thermomechanical properties. Journal of Applied Polymer Science, 99, 513–519.

    Article  CAS  Google Scholar 

  • Tunc, S., & Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Applied Clay Science, 48, 414–424.

    Article  CAS  Google Scholar 

  • Xiong, H., Tang, S., Tang, H., & Zou, P. (2008). The structure and properties of a starch-based biodegradable film. Carbohydrate Polymers, 71, 263–268.

    Article  CAS  Google Scholar 

  • Yano, K., Usuki, A., & Okada, A. (1997). Synthesis and properties of polyimide clay hybrid films. Journal of Polymer Science. Part A: Polymer Chemistry, 35, 2289–2294.

    Article  CAS  Google Scholar 

  • Yi, J. B., Kim, Y. T., Bae, H. J., Whiteside, W. S., & Park, H. J. (2006). Influence of transglutaminase-induced cross-linking on properties of fish gelatin films. Journal of Food Science, 71, 376–383.

    Article  Google Scholar 

  • Yuan, Q. R. (2007). Gelatine clay nanocomposites of improved properties. Polymer, 48, 5369–5375.

    Article  Google Scholar 

  • Zhao, R., Torley, P., & Halley, P. J. (2008). Emerging biodegradable materials: starch and protein based bio-nanocomposites. Journal of Materials Science, 43, 3058–3071.

    Article  CAS  Google Scholar 

  • Zheng, J. P., Li, P., Ma, Y. L., & Yao, K. D. (2002). Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. Journal of Applied Polymer Science, 86, 1189–1194.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the editor and the anonymous referees for comments and constructive suggestions provided for improving the technical quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voon, H.C., Bhat, R., Easa, A.M. et al. Effect of Addition of Halloysite Nanoclay and SiO2 Nanoparticles on Barrier and Mechanical Properties of Bovine Gelatin Films. Food Bioprocess Technol 5, 1766–1774 (2012). https://doi.org/10.1007/s11947-010-0461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0461-y

Keywords

Navigation