Skip to main content

Advertisement

Log in

The Effect of Extruded Orange Pulp on Enzymatic Hydrolysis of Starch and Glucose Retardation Index

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Orange pulp was extruded using a Brabender laboratory single screw extruder (20:1 L/D). The independent variables evaluated were barrel temperature (83, 100, 125, 150, and 167 °C), feed moisture content (22, 25, 30, 35, and 38/100 g), and screw speed (126, 140, 160, 180, and 194 rpm). The apparent density and apparent viscosity values of the extruded orange pulp increased during extrusion, while the oil absorption index decreased, in comparison with the values for raw orange pulp. In vitro studies showed that at the end of the incubation time, 90.68% of the starch was hydrolyzed in the control sample, while only 77.82% and 69.40% pulp of the starch experienced hydrolysis in the presence of raw fiber and extruded orange pulp, respectively. Extruded orange pulp showed a higher glucose retradation index (16.04–25.92%) after 30 min of dialysis and after 60 min (11.66% and 18.33%) than raw orange pulp (8.33%). These results indicated that glucose could be bound with compacted fiber matrices and inhibit alpha-amylase activity. These mechanisms may create a definite benefit by decreasing the rate of glucose absorption and eventually lowering the concentration of postprandial serum glucose. The potential hypoglycemic effects of extruded orange pulp suggest that orange pulp is a good and abundant dietary fiber resource that could be of great benefit in controlling glucose levels in the blood. It could also be added to high-fiber foods as a low-calorie bulk ingredient to reduce the calorie level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adiotomre, J., Easwood, M. A., Edwards, C. A., & Brydon, W. G. (1990). Dietary fiber: In vitro methods that anticipate nutrition and metabolic activity in humans. American Journal of Clinical Nutrition, 52, 128–134.

    CAS  Google Scholar 

  • Amado, R. (1994). Physicochemical properties of dietary fiber and effect of processing on micronutrients availability. In R. Amado, J. L. Barry, & W. Frolich (Eds.), Physicochemical properties to related to type dietary fiber (pp. 49–54). Commission of the European Communities, Luxemburg.

  • Anderson, R. A., Conway, H. F., Pfeifer, V. F., & Griffin Jr., E. L. (1969). Roll and extrusion-cooking of grain sorghum grits. Cereal Science Today, 14, 372–375, 381.

    Google Scholar 

  • Anderson, J. W., Story, L., Sieling, B., Chen, W. J., Petro, M. S., & Story, J. (1984). Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition, 40, 1146–1155.

    CAS  Google Scholar 

  • Arêas, M. A. (1994). Estudo dos efeitos da polpa de laranja sobre parâmetros fisiológicos, nutricionais, bioquímicos e morfológicos em ratos normais e diabéticos. Tese de Doutorado 158p. Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. Campinas, São Paulo, Brasil.

  • Bao, B., & Chang, K. C. (1994). Carrot pulp chemical composition, color, and water-holding capacity as affected by blanching. Journal of Food Science, 59, 1159–1161.

    Article  CAS  Google Scholar 

  • Champ, M. C. (1988). How viscous dietary fiber may affect absorption of nutrients. FASEB Journal, 2, A443 (abstract).

    Google Scholar 

  • Chandalia, M., Garg, A., Luthohann, D., Von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Beneficial effects of a high dietary fiber intake in patients with type 2 diabetes. New England Journal of Medicine, 342, 1392–1398. doi:10.1056/NEJM200005113421903.

    Article  CAS  Google Scholar 

  • Chang, Y. K., Martinez-Flores, H. E., Martinez-Bustos, F., & Sgarbieri, V. C. (2002). Effect of extruded products made with cassava starch blended with oat fiber and resistant starch on the hypocholesterolemic properties as evaluation in hamsters. Nutraceuticals & Food. Korean Society of Food Science and Nutrition, 7, 133–138.

    CAS  Google Scholar 

  • Chau, C. F., Chen, C. H., & Lin, C. Y. (2004). Insoluble fiber-rich fractions derived from Averrhoa carambola: Hypoglycemic effects determined by in vitro methods. Lebensmittel-Wissenschaft undTechnologie-Food Science and Technology, 37, 331–335.

    Article  CAS  Google Scholar 

  • Delort-Laval, J., & Mercier, C. (1976). Évaluation de divers traitements technologiques des céréales : choix des traitements et étude de leur influence sur la fraction glucidique du blé, de l’orge et du maï. Ann Zootechnie, 25, 3–12. doi:10.1051/animres:19760101.

    Article  Google Scholar 

  • Elliott, R. M., Morgan, L. M., Tredger, J. A., Deacon, S., Wright, J., & Marks, V. (1993). Glucagon-like peptide-1 (7–36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: Acute post-prandial and 24-h secretion patterns. Journal of Endocrinology, 138, 159–166.

    Article  CAS  Google Scholar 

  • Fernandez-Garcia, A., Butz, P., & Tauscher, B. (2001). Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.). Journal of Food Science, 66, 1033–1038. doi:10.1111/j.1365-2621.2001.tb08231.x.

    Article  Google Scholar 

  • Fleming, I. D., & Pegler, H. F. (1963). Determination of glucose in the presence of maltose and isomaltose by a stable, specific enzymatic reagent. Analyst (London), 8, 967–974. doi:10.1039/an9638800967.

    Article  Google Scholar 

  • Ghafari, R. H. H. (1986). Slow release carbohydrate: Mechanism of action of viscous fiber. Journal of Clinical Nutrition & Gastroenterology, 1, 237–241.

    Google Scholar 

  • Gourgue, C. M., Champ, M. M., Lozano, Y., & Delort-Laval, J. (1992). Dietary fiber from mango by products: Characterization and hypoglycemic effects determined by in vitro methods. Journal of Agricultural and Food Chemistry, 40, 1864–1868. doi:10.1021/jf00022a027.

    Article  CAS  Google Scholar 

  • Gourgue, C., Champ, M., Guillon, F., & Delort-Laval, J. (1994). Effect of extrusion-cooking on the hypoglycemic properties of citrus fiber: An in vitro study. Journal of the Science of Food and Agriculture, 64, 493–499. doi:10.1002/jsfa.2740640416.

    Article  CAS  Google Scholar 

  • Grigelmo-Miguel, N., & Martin-Belloso, O. (1998). Characterization of dietary fiber from orange juice extraction. Food Research International, 31, 355–361. doi:10.1016/S0963-9969(98)00087-8.

    Article  Google Scholar 

  • Himadri, K., Lambrev, D., Jen, A., Hi, T. S., Akterian, S., & Tanchevev, S. (1992). Response surface modeling of extrusion texturing of defatted soya grits. Journal of Food Science Technology, 29, 141–146.

    Google Scholar 

  • Jaime, L., Molla, E., Fernandez, A., Martin-Cabrejas, M. A., Lopez-Andreu, F. J., & Esteban, R. M. (2002). Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. Journal of Agricultural and Food Chemistry, 50, 122–128. doi:10.1021/jf010797t.

    Article  CAS  Google Scholar 

  • Jenkins, D. J. A. (1986). Slow release carbohydrate: mechanism of action of viscous fiber. Journal of Clinical Nutrition & Gastroenterology, 1, 237–241.

    CAS  Google Scholar 

  • Jenkins, D. J. A., Wolever, T. M., Leeds, A. R., Gassull, A., Haisman, P., Dilawari, J., et al. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89, 301–308. doi:10.1016/j.foodchem.2004.02.037.

    Article  Google Scholar 

  • Larrea, M. A., Chang, Y. K., & Martínez-Bustos, F. (2005). Some functional properties of extruded orange pulp and its effect on the quality of cookies. Lebensmittel-Wissenschaft undTechnologie-Food Science and Technology, 38, 213–220.

    CAS  Google Scholar 

  • Liu, Y., Ahmad, H., Luo, Y., Gardiner, D. T., Gunasekera, R. S., Mckeehan, W. L., et al. (2001). Citrus pectin: characterization and inhibitory effect on fibroblast growth factor—Receptor interaction. Journal of Agricultural and Food Chemistry, 49, 3051–3057. doi:10.1021/jf001020n.

    Article  CAS  Google Scholar 

  • López, G., Ros, G., Rincon, F., Periago, M. J., Martinez, M. C., & Ortuno, J. (1997). Propiedades funcionales de la fibra dietética, mecanismos de acción en el tracto gastrointestinal. Archivos Latinoamericanos de Nutriciόn, 47, 203–207.

    Google Scholar 

  • Maki, C. K., Carson, L. M., Miller, P. M., Turowski, M., Bell, M., Wilder, M. D., et al. (2007). High-viscosity hydroxypropylmethylcellulose blunts postprandial glucose and insulin responses. Clinical Care/Education/Nutrition, 30, 1039–1043.

    CAS  Google Scholar 

  • Marlett, J. A., Hosig, K. B., Vollendorf, N. W., Shinnick, F. L., Haack, V. S., & Story, J. A. (1994). Mechanism of serum cholesterol reduction by oat bran. Hepatology, 20, 1450–1457.

    Article  CAS  Google Scholar 

  • Monro, J. A. (2004). Adequate intake values for dietary fibre based on fecal bulking indexes of 66 foods. European Journal of Clinical Nutrition, 58, 32–39.

    Article  CAS  Google Scholar 

  • O’Dea, K., Snow, P., & Neste, P. (1981). Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo. American Journal of Clinical Nutrition, 34, 1991–1993.

    Google Scholar 

  • Ou, S., Kwok, K. C., Li, Y., & Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49, 1026–1029. doi:10.1021/jf000574n.

    Article  CAS  Google Scholar 

  • Parrott, M. E., & Thrall, B. E. (1978). Functional properties of various fibers: Physical properties. Journal of Food Science, 43, 759–763. doi:10.1111/j.1365-2621.1978.tb02412.x.

    Article  CAS  Google Scholar 

  • Pereira, M. A., O’Reilly, E., Augustsson, K., Fraser, G. E., Goldbourt, U., Heitmann, B. L., et al. (2004). Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Archives of Internal Medicine, 164, 370–376. doi:10.1001/archinte.164.4.370.

    Article  Google Scholar 

  • Porzio, M. A., & Blake, J. R. (1983). Washed orange pulp: characterization and properties. In I. Furda (Ed.), Unconventional sources of dietary fiber. Washington, DC: American Chemical Society.

    Google Scholar 

  • Ralet, M. C., Thibault, J. F., & Valle, D. G. (1991). Solubilisation of sugar-beet pulp cell wall polysaccharides by extrusion-cooking. Lebensmittel-Wissenschaft undTechnologie-Food Science and Technology, 24, 107–112.

    CAS  Google Scholar 

  • Ralet, M. C., Valle, D. G., & Thibault, J. F. (1993). Raw and extruded fiber from pea hull. Part I: Composition and physico chemical properties. Carbohydrate Polymers, 20, 17–23. doi:10.1016/0144-8617(93)90028-3.

    Article  CAS  Google Scholar 

  • Rincón, A. M., Vásquez, A. M., & Padilla, F. C. (2005). Composición química y compuestos bioactivos de las harinas de cáscaras de naranja (citrus sinensis), mandarina (citrus reticulata) y toronja (citrus paradisi) cultivadas en Venezuela. Archivos Latinoamericanos de Nutriciόn, 55, 305–310.

    Google Scholar 

  • Rosamond, W. D. (2002). Dietary fiber and prevention of cardiovascular disease. Journal of the American College of Cardiology, 39, 57–59. doi:10.1016/S0735-1097(01)01685-0.

    Article  Google Scholar 

  • SAS. Statistical Analysis System (1995). User's guide. Cary, NC: The Institute.

    Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). Byproducts of plant food processing as a source of functional compounds-recent developments. Trends in Food Science and Technology, 12, 401–405.

    Article  CAS  Google Scholar 

  • Schneeman, B. O. (1987). Soluble and insoluble fibre—Different physiological response. Food Technology, 2, 81–82.

    Google Scholar 

  • Silva, R. S., & Borsato, D. (1985). Análise de biosistemas através de delineamento factorial: Optimização pelo método super simplex modificado. Arquivos de Biologia e Tecnologia, 28, 521–533.

    Google Scholar 

  • Tollier, M., & Guilbot, A. (1971). Le mais grain préstokage, sechage et qualité. IV. Caracteristiques de la fraction glucidique des échantillons de mais grain. Ann Zootechnie, 20, 633–640. doi:10.1051/animres:19710504.

    Article  Google Scholar 

  • Tollier, T., & Robin, J. P. (1979). Adaptation de la méthode à l’orcinol sulfurique au dosage automatique des glucides neutres totaux: Conditions d,application aux extraits d’origine végétale. Annales de Technologie Agricole, 28, 1–15.

    CAS  Google Scholar 

  • Wang, W. M., & Klopfenstein, C. F. (1993). Effect of twin-screw extrusion on the nutritional quality of wheat, barley and oats. Cereal Chemistry, 70, 712–715.

    CAS  Google Scholar 

  • Wood, P. J. (1990). Physicochemical properties and physiological effects of the (1-3) (1-4)—Beta-D-glucan from oats. Advances in Experimental Medicine and Biology, 270, 119–127.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martínez Bustos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Céspedes, M.A.L., Martínez Bustos, F. & Kil chang, Y. The Effect of Extruded Orange Pulp on Enzymatic Hydrolysis of Starch and Glucose Retardation Index. Food Bioprocess Technol 3, 684–692 (2010). https://doi.org/10.1007/s11947-008-0166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0166-7

Keywords

Navigation