Skip to main content
Log in

Transcatheter Aortic Valve Implantation in Low and Intermediate Surgical Risk Patients: a Critical Appraisal of Seminal Studies

  • Valvular Heart Disease (J Dal-Bianco, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose

Transcatheter aortic valve implantation (TAVI) has grown in popularity as an alternative to surgical aortic valve replacement (SAVR) for the management of aortic stenosis. In this review, we perform a critical appraisal of the key studies comparing TAVI and SAVR in aortic stenosis patients with intermediate and low risk of operative mortality.

Recent findings

Early data from TAVI vs. SAVR trials in low and intermediate surgical risk patients suggest equivalent outcomes at 2 years, with some hints of superiority for TAVI over SAVR in the low-risk group. Initial mid-term data are a bit less favorable for TAVI with interval dissipation of any early survival/stroke advantages and some new questions about TAVI prosthesis durability.

Summary

The detailed discussion highlights the distinguishing features of several seminal studies, the salient features of major society treatment guidelines, the gaps in the literature, and the critical controversies that will shape the future of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Readings

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

    1. Siontis GCM, et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis. Eur Heart J. 2019;40(38):3143–53. https://doi.org/10.1093/eurheartj/ehz275.

      Article  PubMed  Google Scholar 

    2. Carroll JD, et al. STS-ACC TVT registry of transcatheter aortic valve replacement. J Am Coll Cardiol. 2020;76(21):2492–516. https://doi.org/10.1016/j.jacc.2020.09.595.

    3. Nishimura RA, et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(25):e1159–95. https://doi.org/10.1161/CIR.0000000000000503.

    4. Otto CM, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143(5):72–227. https://doi.org/10.1161/cir.0000000000000923.

      Article  Google Scholar 

    5. Kaul S. Raising the evidentiary bar for guideline recommendations for TAVR: JACC review topic of the week. J Am Coll Cardiol. 2020;76(8):985–91. https://doi.org/10.1016/j.jacc.2020.05.085.

    6. • Leon MB, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20. https://doi.org/10.1056/NEJMoa1514616. Report from the initial US RCT for TAVI vs. SAVR in intermediate surgical risk patients.

      Article  CAS  PubMed  Google Scholar 

    7. Elmariah S, et al. Transapical transcatheter aortic valve replacement is associated with increased cardiac mortality in patients with left ventricular dysfunction: insights from the PARTNER I trial. JACC Cardiovasc Interv. 2017;10(23):2414–22. https://doi.org/10.1016/j.jcin.2017.09.023.

      Article  PubMed  Google Scholar 

    8. Moat NE. Will TAVR become the predominant method for treating severe aortic stenosis? N Engl J Med. 2016;374(17):1682–3. https://doi.org/10.1056/nejme1603473.

      Article  CAS  PubMed  Google Scholar 

    9. • Reardon MJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31. https://doi.org/10.1056/NEJMoa1700456. Report from the second US RCT for TAVI vs. SAVR in intermediate surgical risk patients.

      Article  PubMed  Google Scholar 

    10. Van Belle E, et al. Balloon-expandable versus self-expanding transcatheter aortic valve replacement: a propensity-matched comparison from the FRANCE-TAVI registry. Circulation. 2020;243–259. https://doi.org/10.1161/CIRCULATIONAHA.119.043785.

    11. Furer A, et al. Effect of baseline left ventricular ejection fraction on 2-year outcomes after transcatheter aortic valve replacement: analysis of the PARTNER 2 trials. Circ Hear Fail. 2019;12(8). https://doi.org/10.1161/CIRCHEARTFAILURE.118.005809.

    12. Schewel J, Schlüter M, Schmidt T, Kuck KH, Frerker C, Schewel D. Early haemodynamic changes and long-term outcome of patients with severe low-gradient aortic stenosis after transcatheter aortic valve replacement. EuroIntervention. 2020;15(13):1181–9. https://doi.org/10.4244/EIJ-D-19-00399.

      Article  PubMed  Google Scholar 

    13. Søndergaard L, et al. Comparison of a complete percutaneous versus surgical approach to aortic valve replacement and revascularization in patients at intermediate surgical risk results from the randomized SURTAVI trial. Circulation. 2019;140(16):1296–305. https://doi.org/10.1161/CIRCULATIONAHA.118.039564.

      Article  Google Scholar 

    14. Pibarot P, et al. Structural deterioration of transcatheter versus surgical aortic valve bioprostheses in the PARTNER-2 trial. J Am Coll Cardiol. 2020;76(16):1830–43. https://doi.org/10.1016/j.jacc.2020.08.049.

      Article  PubMed  Google Scholar 

    15. Makkar RR, et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. N Engl J Med. 2020;382(9):799–809. https://doi.org/10.1056/NEJMoa1910555.

      Article  PubMed  Google Scholar 

    16. Maes F, et al. Outcomes from transcatheter aortic valve replacement in patients with low-flow, low-gradient aortic stenosis and left ventricular ejection fraction less than 30%: a substudy from the TOPAS-TAVI registry. JAMA Cardiol. 2019;4(1):64–70. https://doi.org/10.1001/jamacardio.2018.4320.

      Article  PubMed  Google Scholar 

    17. Piazza N, et al. A 3-center comparison of 1-year mortality outcomes between transcatheter aortic valve implantation and surgical aortic valve replacement on the basis of propensity score matching among intermediate-risk surgical patients. JACC Cardiovasc Interv. 2013;6(5):443–51. https://doi.org/10.1016/j.jcin.2013.01.136.

      Article  PubMed  Google Scholar 

    18. Latib A, et al. Transcatheter vs surgical aortic valve replacement in intermediate- surgical-risk patients with aortic stenosis: a propensity score-matched case-control study. Am Heart J. 2012;164(6):910–7. https://doi.org/10.1016/j.ahj.2012.09.005.

      Article  PubMed  Google Scholar 

    19. Tamburino C, et al. 1-year outcomes after transfemoral transcatheter or surgical aortic valve replacement: results from the Italian OBSERVANT study. J Am Coll Cardiol. 2015;66(7):804–12. https://doi.org/10.1016/j.jacc.2015.06.013.

      Article  PubMed  Google Scholar 

    20. Foroutan F, et al. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies. BMJ. 2016;354. https://doi.org/10.1136/bmj.i5065.

    21. Bourguignon T, et al. Very long-term outcomes of the carpentier-edwards perimount valve in aortic position. Ann Thorac Surg. 2015;99(3):831–7. https://doi.org/10.1016/j.athoracsur.2014.09.030.

      Article  PubMed  Google Scholar 

    22. Van Belle E, Delhaye C, Vincent F. Structural valve deterioration at 5 years of TAVR versus SAVR: half full or half empty?. J Am Coll Cardiol. 2020;76(16):1844–47. https://doi.org/10.1016/j.jacc.2020.09.009.

    23. Kumar A, et al. Hemodynamic durability of transcatheter aortic valves using the updated Valve Academic Research Consortium-2 criteria. Catheter Cardiovasc Interv. 2019;93(4):729–38. https://doi.org/10.1002/ccd.27927.

      Article  PubMed  Google Scholar 

    24. • Mack MJ, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705. https://doi.org/10.1056/NEJMoa1814052. Initial data on early outcomes from the RCT for TAVI vs. SAVR in low surgical risk patients.

      Article  PubMed  Google Scholar 

    25. • Popma JJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15. https://doi.org/10.1056/NEJMoa1816885. Initial data on early outcomes from the RCT for TAVI vs. SAVR in low surgical risk patients.

      Article  PubMed  Google Scholar 

    26. Leon MB, et al. Outcomes 2 years after transcatheter aortic valve replacement in patients at low surgical risk. J Am Coll Cardiol. 2021;77(9):1149–61. https://doi.org/10.1016/j.jacc.2020.12.052.

      Article  PubMed  Google Scholar 

    27. Prendergast BD, Redwood SR, Patterson T. TAVR versus SAVR in aortic stenosis: long journey, new roadmap. J Am Coll Cardiol. 2021;77(9):1162–64. https://doi.org/10.1016/j.jacc.2021.01.012.

    28. Thyregod HGH, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol. 2015;65(20):2184–94. https://doi.org/10.1016/j.jacc.2015.03.014.

      Article  PubMed  Google Scholar 

    29. Thyregod HGH, et al. Five-year clinical and echocardiographic outcomes from the NOTION randomized clinical trial in patients at lower surgical risk. Circulation. 2019;139(24):2714–23. https://doi.org/10.1161/CIRCULATIONAHA.118.036606.

      Article  Google Scholar 

    30. Çelik M, Milojevic MM, Durko AP, Oei FBS, Bogers AJJC, Mahtab EAF. Mortality in low-risk patients with aortic stenosis undergoing transcatheter or surgical aortic valve replacement: a reconstructed individual patient data meta-analysis. Interact Cardiovasc Thorac Surg. 2020;31(5):587–94. https://doi.org/10.1093/icvts/ivaa179.

      Article  PubMed  Google Scholar 

    31. Kolte D, et al. Transcatheter versus surgical aortic valve replacement in low-risk patients. J Am Coll Cardiol. 2019;74(12):1532–40. https://doi.org/10.1016/j.jacc.2019.06.076.

      Article  PubMed  Google Scholar 

    32. Thourani VH, et al. The international society for minimally invasive cardiothoracic surgery expert consensus statement on transcatheter and surgical aortic valve replacement in low- and intermediate-risk patients: a meta-analysis of randomized and propensity-matched studies. Innovations (Phila). 2021;16(1):3–16. https://doi.org/10.1177/1556984520978316.

      Article  Google Scholar 

    33. Rosato S, et al. Transcatheter aortic valve implantation compared with surgical aortic valve replacement in low-risk patients. Circ Cardiovasc Interv. 2016;9(5). https://doi.org/10.1161/CIRCINTERVENTIONS.115.003326.

    34. Virtanen MPO, et al. Comparison of outcomes after transcatheter aortic valve replacement vs surgical aortic valve replacement among patients with aortic stenosis at low operative risk. JAMA Netw Open. 2019;2(6): e195742. https://doi.org/10.1001/jamanetworkopen.2019.5742.

      Article  PubMed  PubMed Central  Google Scholar 

    35. Frerker C, et al. In-hospital mortality in propensity-score matched low-risk patients undergoing routine isolated surgical or transfemoral transcatheter aortic valve replacement in 2014 in Germany. Clin Res Cardiol. 2017;106(8):610–7. https://doi.org/10.1007/s00392-017-1097-y.

      Article  PubMed  Google Scholar 

    36. Brennan JM, et al. Transcatheter versus surgical aortic valve replacement: propensity-matched comparison. J Am Coll Cardiol. 2017;70(4):439–50. https://doi.org/10.1016/j.jacc.2017.05.060.

      Article  PubMed  PubMed Central  Google Scholar 

    37. Bekeredjian R, et al. Patients at low surgical risk as defined by the society of thoracic surgeons score undergoing isolated interventional or surgical aortic valve implantation: in-hospital data and 1-year results from the German Aortic Valve Registry (GARY). Eur Heart J. 2019;40(17):1323–30. https://doi.org/10.1093/eurheartj/ehy699.

      Article  PubMed  Google Scholar 

    38. Schaefer A, et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement in low-risk patients: a propensity score-matched analysis. Eur J Cardio-Thoracic Surg. 2019;56(6):1131–9. https://doi.org/10.1093/ejcts/ezz245.

      Article  Google Scholar 

    39. Forrest JK, et al. Transcatheter aortic valve replacement in bicuspid versus tricuspid aortic valves from the STS/ACC TVT Registry. JACC Cardiovasc Interv. 2020;13(15):1749–59. https://doi.org/10.1016/j.jcin.2020.03.022.

      Article  PubMed  Google Scholar 

    40. Makkar RR, et al. Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke. JAMA - J Am Med Assoc. 2019;321(22):2193–202. https://doi.org/10.1001/jama.2019.7108.

      Article  Google Scholar 

    41. Halim SA. et al. Outcomes of transcatheter aortic valve replacement in patients with bicuspid aortic valve disease: a report from the society of thoracic surgeons/American College of Cardiology Transcatheter valve Therapy registry. Circulation. 2020;1071–79. https://doi.org/10.1161/CIRCULATIONAHA.119.040333.

    42. Waksman R, et al. Transcatheter aortic valve replacement in low-risk patients with symptomatic severe bicuspid aortic valve stenosis. JACC Cardiovasc Interv. 2020;13(9):1019–27. https://doi.org/10.1016/j.jcin.2020.02.008.

      Article  PubMed  Google Scholar 

    43. Lytvyn L, et al. Patient values and preferences on transcatheter or surgical aortic valve replacement therapy for aortic stenosis: a systematic review. BMJ Open. 2016;6(9): e014327. https://doi.org/10.1136/bmjopen-2016-014327.

      Article  PubMed  PubMed Central  Google Scholar 

    44. Anaya J, et al. Pilot study of a patient decision aid for valve choices in surgical aortic valve replacement. Ann Thorac Surg. 2019;108(3):730–6. https://doi.org/10.1016/j.athoracsur.2019.03.048.

      Article  PubMed  Google Scholar 

    45. Landes U, et al. Repeat transcatheter aortic valve replacement for transcatheter prosthesis dysfunction. J Am Coll Cardiol. 2020;75(16):1882–93. https://doi.org/10.1016/j.jacc.2020.02.051.

      Article  PubMed  Google Scholar 

    46. Makkar RR, et al. Determinants and outcomes of acute transcatheter valve-in-valve therapy or embolization: a study of multiple valve implants in the U.S. PARTNER trial (Placement of aortic transcatheter valve trial Edwards SAPIEN transcatheter heart valve). J Am Coll Cardiol. 2013;62(5):418–30. https://doi.org/10.1016/j.jacc.2013.04.037.

      Article  PubMed  Google Scholar 

    47. Witkowski A, Jastrzebski J, Dabrowski M, Chmielak Z. Second transcatheter aortic valve implantation for treatment of suboptimal function of previously implanted prosthesis: Review of the literature. J Interv Cardiol. 2014;27(3):300–7. https://doi.org/10.1111/joic.12120.

    48. Jawitz OK, et al. Reoperation after transcatheter aortic valve replacement: an analysis of the society of thoracic surgeons database. JACC Cardiovasc Interv. 2020;13(13):1515–25. https://doi.org/10.1016/j.jcin.2020.04.029.

      Article  PubMed  PubMed Central  Google Scholar 

    49. Fukuhara S, et al. Surgical explantation of transcatheter aortic bioprostheses: results and clinical implications. J Thorac Cardiovasc Surg. 2020. https://doi.org/10.1016/j.jtcvs.2019.11.139.

      Article  PubMed  PubMed Central  Google Scholar 

    50. Ochiai T, et al. Coronary access after TAVR. JACC Cardiovasc Interv. 2020;13(6):693–705. https://doi.org/10.1016/j.jcin.2020.01.216.

      Article  PubMed  Google Scholar 

    51. Tang GHL, Kaneko T, Cavalcante J. Predicting the feasibility of post-TAVR coronary access and redo TAVR: more unknowns than knowns. JACC Cardiovasc Interv. 2020;13(6):736–38. https://doi.org/10.1016/j.jcin.2020.01.222.

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Arminder S. Jassar MD.

    Ethics declarations

    Ethics approval

    Not required.

    Human and animal rights and informed consent

    This article does not contain any studies with human or animal subjects performed by any of the authors.

    Consent for publication

    All authors reviewed the manuscript and approved submission to the journal.

    Conflict of interest

    Asishana A. Osho declares that he has no conflict of interest. Nathaniel B. Langer declares that he has no conflict of interest. Arminder S. Jassar declares that he has no conflict of interest.

    Additional information

    Publisher's note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Valvular Heart Disease

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Osho, A.A., Langer, N.B. & Jassar, A.S. Transcatheter Aortic Valve Implantation in Low and Intermediate Surgical Risk Patients: a Critical Appraisal of Seminal Studies. Curr Treat Options Cardio Med 24, 1–11 (2022). https://doi.org/10.1007/s11936-022-00960-7

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11936-022-00960-7

    Keywords

    Navigation