Skip to main content

Advertisement

Log in

Cardiovascular Complications Associated with Mediastinal Radiation

  • Cardio-oncology (M Fradley, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Radiation-induced heart disease (RIHD) encompasses a broad range of pathologies and is a significant source of morbidity and mortality among cancer survivors. Increased awareness of the early and late consequences of mediastinal radiation has led to the development of strategies for cardiac risk reduction to improve outcomes through active surveillance and early detection of RIHD. This review aims to discuss the current knowledge on the presentation, diagnosis, and management of RIHD.

Recent findings

Decades’ worth of cohort data demonstrates an increased risk of RIHD as cancer survivors age. Additionally, interventional/surgical management of irradiated patients poses unique considerations and can be technically challenging. Used in conjunction with echocardiography, multimodality imaging for morphologic and functional assessment adds complementary value in screening, surveillance, and targeted symptom investigation in patients at risk for RIHD. Furthermore, sensitive imaging parameters and biomarkers have shown potential in detecting subclinical RIHD. Despite the development of techniques which minimize cardiac exposure to ionizing radiation, their effects on the long-term development of RIHD remain to be seen.

Summary

Due to the morbidity and mortality associated with RIHD, both patients and clinicians should be aware of the lifelong cardiovascular risks of mediastinal radiation exposure. RIHD surveillance should be a consideration throughout the survivorship period. Studies to evaluate the clinical consequences of contemporary radiation therapy strategies aimed at minimizing cardiac doses and the value of novel, more sensitive metrics for the early detection or prognostication of RIHD are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bryant AK, Banegas MP, Martinez ME, Mell LK, Murphy JD. Trends in radiation therapy among cancer survivors in the United States, 2000–2030. Cancer Epidemiol Biomark Prev. 2017;26(6):963–70. https://doi.org/10.1158/1055-9965.EPI-16-1023.

    Article  Google Scholar 

  2. Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25(25):3991–4008. https://doi.org/10.1200/JCO.2007.10.9777.

    Article  CAS  PubMed  Google Scholar 

  3. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14(8):721–40. https://doi.org/10.1093/ehjci/jet123.

    Article  PubMed  Google Scholar 

  4. Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61(23):2319–28. https://doi.org/10.1016/j.jacc.2013.01.090.

    Article  PubMed  Google Scholar 

  5. • Desai MY, Jellis CL, Kotecha R, Johnston DR, Griffin BP. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc Imaging. 2018;11(8):1132–49. https://doi.org/10.1016/j.jcmg.2018.04.028. This is a contemporary review on the use of multimodality testing for diagnosis and management of radiation-associated cardiac disease.

    PubMed  Google Scholar 

  6. Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39. https://doi.org/10.3389/fonc.2015.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-induced cardiovascular disease: mechanisms and importance of linear energy transfer. Front Cardiovasc Med. 2018;5:5. https://doi.org/10.3389/fcvm.2018.00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halle M, Gabrielsen A, Paulsson-Berne G, Gahm C, Agardh HE, Farnebo F, et al. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol. 2010;55(12):1227–36. https://doi.org/10.1016/j.jacc.2009.10.047.

    Article  CAS  PubMed  Google Scholar 

  9. Boerma M, Bart CI, Wondergem J. Effects of ionizing radiation on gene expression in cultured rat heart cells. Int J Radiat Biol. 2002;78(3):219–25. https://doi.org/10.1080/09553000110094797.

    Article  CAS  PubMed  Google Scholar 

  10. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61. https://doi.org/10.1016/j.radonc.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  11. Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65. https://doi.org/10.1016/j.ijrobp.2009.09.064.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bouillon K, Haddy N, Delaloge S, Garbay JR, Garsi JP, Brindel P, et al. Long-term cardiovascular mortality after radiotherapy for breast cancer. J Am Coll Cardiol. 2011;57(4):445–52. https://doi.org/10.1016/j.jacc.2010.08.638.

    Article  PubMed  Google Scholar 

  13. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst. 2007;99(3):206–14. https://doi.org/10.1093/jnci/djk029.

    Article  PubMed  Google Scholar 

  14. van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015;175(6):1007–17. https://doi.org/10.1001/jamainternmed.2015.1180.

    Article  PubMed  Google Scholar 

  15. • van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43. https://doi.org/10.1200/JCO.2015.63.4444. This study quantified the linear dose-dependent relationship between radiation and coronary heart disease among Hodgkin lymphoma survivors who were treated with historical protocols. It demonstrated a risk of 7.4%/Gy of mean heart dose, the degree of which was modified by age at radiation exposure and certain cardiovascular risk factors.

    Article  CAS  Google Scholar 

  16. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825.

    Article  CAS  PubMed  Google Scholar 

  17. • Cheng YJ, Nie XY, Ji CC, Lin XX, Liu LJ, Chen XM, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/JAHA.117.005633. This is a comprehensive review of the cardiovascular risks of radiation therapy among women survivors of breast cancer, particularly of cardiovascular mortality and coronary heart disease.

  18. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211.

    Article  PubMed  Google Scholar 

  19. Aleman BMP, van den Belt-Dusebout AW, de Bruin ML, van’t Veer MB, MHA B, de Boer JP, et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007;109:1878–86. https://doi.org/10.1182/blood-2006-07.

    Article  CAS  PubMed  Google Scholar 

  20. Hull MC, Morris CG, Pepine CJ, Mendenhall NP. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of Hodgkin lymphoma treated with radiation therapy. J Am Heart Assoc. 2003;290:2831–7.

    Article  CAS  Google Scholar 

  21. Galper SL, Yu JB, Mauch PM, Strasser JF, Silver B, LaCasce A, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. 2011;117(2):412–8. https://doi.org/10.1182/blood-2010-.

    Article  CAS  PubMed  Google Scholar 

  22. Reinders JG, Heijmen BJM, Olofsen-van Acht MJJ, van Putten WLJ, Levendag PC. Ischemic heart disease after mantle®eld irradiation for Hodgkin’s disease in long-term follow-up. Radiother Oncol. 1999;51(1):35–42.

    Article  CAS  Google Scholar 

  23. Matasar M, Gupta D. Late cardiac effects of therapy for Hodgkin lymphoma. Clin Oncol. 2016;1:1042.

    Google Scholar 

  24. van Rosendael AR, Daniels LA, Dimitriu-Leen AC, Smit JM, van Rosendael PJ, Schalij MJ, et al. Different manifestation of irradiation induced coronary artery disease detected with coronary computed tomography compared with matched non-irradiated controls. Radiother Oncol. 2017;125(1):55–61. https://doi.org/10.1016/j.radonc.2017.09.008.

    Article  PubMed  Google Scholar 

  25. Demographic and Cancer Treatment of Participants in the Expansion, Original and Overall Cohorts [database on the Internet]. St. Jude Children’s Research Hospital. The Childhood Cancer Survivor Study. 2019. Available from: https://ccss.stjude.org/content/dam/en_US/shared/ccss/documents/data/treatment-exposure-tables.pdf. Accessed: March 7, 2019.

  26. Armstrong GT, Oeffinger KC, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–80. https://doi.org/10.1200/JCO.2013.49.3205.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. https://doi.org/10.1136/bmj.b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8. https://doi.org/10.1200/JCO.2016.69.8480. This study further explored the relationship of radiation with coronary events beyond the conventional parameter of mean heart dose with other dose-volume parameters, where the volume of the left ventricle receiving 5 Gy was found to be the most significant predictor.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjogren I, Lagerqvist B, et al. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol. 2012;30(4):380–6. https://doi.org/10.1200/JCO.2011.34.5900.

    Article  PubMed  Google Scholar 

  30. Jacob S, Broggio D, Derreumaux S, Camilleri J, Lapeyre M, Bruguiere E, et al. Cardiac radiation exposure due to breast cancer radiotherapy: why mean heart dose is a limited parameter for cardiotoxicity studies? (BACCARAT Study). Eur Heart J. 2018;39(suppl_1). https://doi.org/10.1093/eurheartj/ehy563.P3505.

  31. Heidenreich PA, Schnittger I, Strauss HW, Vagelos RH, Lee BK, Mariscal CS, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J Clin Oncol. 2007;25(1):43–9. https://doi.org/10.1200/JCO.2006.07.0805.

    Article  PubMed  Google Scholar 

  32. Marks LB, Yu X, Prosnitz RG, Zhou SM, Hardenbergh PH, Blazing M, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63(1):214–23. https://doi.org/10.1016/j.ijrobp.2005.01.029.

    Article  PubMed  Google Scholar 

  33. Gayed I, Gohar S, Liao Z, McAleer M, Bassett R, Yusuf SW. The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy. Int J Card Imaging. 2009;25(5):487–95. https://doi.org/10.1007/s10554-009-9440-7.

    Article  Google Scholar 

  34. Groarke JD, Nguyen PL, Nohria A, Ferrari R, Cheng S, Moslehi J. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease. Eur Heart J. 2014;35(10):612–23. https://doi.org/10.1093/eurheartj/eht114.

    Article  PubMed  Google Scholar 

  35. Rademaker J, Schoder H, Ariaratnam NS, Strauss HW, Yahalom J, Steingart R, et al. Coronary artery disease after radiation therapy for Hodgkin’s lymphoma: coronary CT angiography findings and calcium scores in nine asymptomatic patients. AJR Am J Roentgenol. 2008;191(1):32–7. https://doi.org/10.2214/AJR.07.3112.

    Article  PubMed  Google Scholar 

  36. Kupeli S, Hazirolan T, Varan A, Akata D, Alehan D, Hayran M, et al. Evaluation of coronary artery disease by computed tomography angiography in patients treated for childhood Hodgkin’s lymphoma. J Clin Oncol. 2010;28(6):1025–30. https://doi.org/10.1200/JCO.2009.25.2627.

    Article  PubMed  Google Scholar 

  37. Girinsky T, M’Kacher R, Lessard N, Koscielny S, Elfassy E, Raoux F, et al. Prospective coronary heart disease screening in asymptomatic Hodgkin lymphoma patients using coronary computed tomography angiography: results and risk factor analysis. Int J Radiat Oncol Biol Phys. 2014;89(1):59–66. https://doi.org/10.1016/j.ijrobp.2014.01.021.

    Article  PubMed  Google Scholar 

  38. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers, version 5.0. Children’s Oncology Group, Monrovia, CA. 2018. http://www.survivorshipguidelines.org. Accessed March 7, 2019 2019.

  39. Donnellan E, Masri A, Johnston DR, Pettersson GB, Rodriguez LL, Popovic ZB, et al. Long-term outcomes of patients with mediastinal radiation-associated severe aortic stenosis and subsequent surgical aortic valve replacement: a matched cohort study. J Am Heart Assoc. 2017;6(5):e005396. https://doi.org/10.1161/JAHA.116.005396.

  40. Cutter DJ, Schaapveld M, Darby SC, Hauptmann M, van Nimwegen FA, Krol AD, et al. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst. 2015;107(4):djv008. https://doi.org/10.1093/jnci/djv008.

  41. Cella L, Oh JH, Deasy JO, Palma G, Liuzzi R, D’Avino V, et al. Predicting radiation-induced valvular heart damage. Acta Oncol. 2015;54(10):1796–804. https://doi.org/10.3109/0284186X.2015.1016624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bijl JM, Roos MM, van Leeuwen-Segarceanu EM, Vos JM, Bos WW, Biesma DH, et al. Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy +/- chemotherapy. Am J Cardiol. 2016;117(4):691–6. https://doi.org/10.1016/j.amjcard.2015.11.027.

    Article  PubMed  Google Scholar 

  43. Wethal T, Lund MB, Edvardsen T, Fossa SD, Pripp AH, Holte H, et al. Valvular dysfunction and left ventricular changes in Hodgkin’s lymphoma survivors. A longitudinal study. Br J Cancer. 2009;101(4):575–81. https://doi.org/10.1038/sj.bjc.6605191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42(4):743–9. https://doi.org/10.1016/s0735-1097(03)00759-9.

    Article  PubMed  Google Scholar 

  45. Mulrooney DA, Armstrong GT, Huang S, Ness KK, Ehrhardt MJ, Joshi VM, et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016;164(2):93–101. https://doi.org/10.7326/M15-0424.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Menezes KM, Wang H, Hada M, Saganti PB. Radiation matters of the heart: a mini review. Front Cardiovasc Med. 2018;5:83. https://doi.org/10.3389/fcvm.2018.00083.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96. https://doi.org/10.1161/circulationaha.116.025434.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Nimwegen FA, Ntentas G, Darby SC, Schaapveld M, Hauptmann M, Lugtenburg PJ, et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood. 2017;129(16):2257–65. https://doi.org/10.1182/blood-.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I. Diastolic dysfunction after mediastinal irradiation. Am Heart J. 2005;150(5):977–82. https://doi.org/10.1016/j.ahj.2004.12.026.

    Article  PubMed  Google Scholar 

  50. •• Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–e36. https://doi.org/10.1016/s1470-2045(14)70409-7. Harmonized guideline recommendations for cardiomyopathy surveillance in the childhood cancer survivor population based on available evidence and recommendations of different childhood cancer organizations.

    Article  Google Scholar 

  51. •• Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893–911. https://doi.org/10.1200/JCO.2016.70.5400. Guideline recommendations on cardiac dysfunction for adult cancer survivors based on available data and expert consensus that describes the approach before, during, and after cancer treatment and identifies current knowledge gaps and future directions.

    Article  Google Scholar 

  52. •• Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude lifetime cohort study. J Am Coll Cardiol. 2015;65(23):2511–22. https://doi.org/10.1016/j.jacc.2015.04.013. This study compared different echocardiogram-derived measures of cardiac function in childhood cancer survivors and demonstrated that abnormal diastolic function and global longitudinal strain were more common findings than decreased left ventricular ejection fraction, possibly serving as earlier markers of cardiac dysfunction that may be targets for intervention.

    Article  Google Scholar 

  53. Lo Q, Hee L, Batumalai V, Allman C, MacDonald P, Lonergan D, et al. Strain imaging detects dose-dependent segmental cardiac dysfunction in the acute phase after breast irradiation. Int J Radiat Oncol Biol Phys. 2017;99(1):182–90. https://doi.org/10.1016/j.ijrobp.2017.05.030.

    Article  PubMed  Google Scholar 

  54. Jacob S, Walker V, Fondard O, Chevelle C, Jimenez G, Bernier MO, et al. Use of myocardial strain imaging by echocardiography for the early detection of radiotherapy-induced cardiotoxicity in breast cancer patients (BACCARAT Study). Arch Cardiovasc Dis Suppl. 2019;11(1):49–50. https://doi.org/10.1016/j.acvdsp.2018.10.107.

    Article  Google Scholar 

  55. Brosius FC III, Walter BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3500 rads to the heart. Am J Med. 1981;70(3):519–30.

    Article  Google Scholar 

  56. Veinot JP, Edwards WD. Pathology of radiation-lnduced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27(8):766–73.

    Article  CAS  Google Scholar 

  57. Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage iii non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94. https://doi.org/10.1200/JCO.2016.70.0229.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schytte T, Hansen O, Stolberg-Rohr T, Brink C. Cardiac toxicity and radiation dose to the heart in definitive treated non-small cell lung cancer. Acta Oncol. 2010;49(7):1058–60. https://doi.org/10.3109/0284186X.2010.504736.

    Article  PubMed  Google Scholar 

  59. Tucker SL, Liu A, Gomez D, Tang LL, Allen P, Yang J et al. Impact of heart and lung dose on early survival in patients with non-small cell lung cancer treated with chemoradiation.2016;119(3):495–500. doi:https://doi.org/10.1016/j.radonc.2016.04.025.

    Article  Google Scholar 

  60. Wei X, Liu HH, Tucker SL, Wang S, Mohan R, Cox JD, et al. Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2008;70(3):707–14. https://doi.org/10.1016/j.ijrobp.2007.10.056.

    Article  PubMed  Google Scholar 

  61. Tamari K, Isohashi F, Akino Y, Suzuki O, Seo Y, Yoshioka Y, et al. Risk factors for pericardial effusion in patients with stage i esophageal cancer treated with chemoradiotherapy. Anticancer Res. 2014;34(12):7389–93.

    PubMed  Google Scholar 

  62. Fukada J, Shigematsu N, Takeuchi H, Ohashi T, Saikawa Y, Takaishi H, et al. Symptomatic pericardial effusion after chemoradiation therapy in esophageal cancer patients. Int J Radiat Oncol Biol Phys. 2013;87(3):487–93. https://doi.org/10.1016/j.ijrobp.2013.07.008.

    Article  PubMed  Google Scholar 

  63. Shigematsu N, Kitamura N, Saikawa Y, Ikeda E, Fukada J, Kunieda E, et al. Death related to pleural and pericardial effusions following chemoradiotherapy in a patient with advanced cancers of the esophagus and stomach. Keio J Med. 2007;56(4):124–9.

    Article  Google Scholar 

  64. Rodríguez-García JL, Fraile G, Moreno MA, Sánchez-Corral JA, Peñalver R. Recurrent massive pleural effusion as a late complication of radiotherapy in Hodgkin’s disease. Chest. 1991;100(4):1165–6. https://doi.org/10.1378/chest.100.4.1165.

    Article  PubMed  Google Scholar 

  65. Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22(15):3139–48. https://doi.org/10.1200/jco.2004.09.109.

    Article  PubMed  Google Scholar 

  66. De Bruin ML, Dorresteijn LD, van’t Veer MB, Krol AD, van der Pal HJ, Kappelle AC, et al. Increased risk of stroke and transient ischemic attack in 5-year survivors of Hodgkin lymphoma. J Natl Cancer Inst. 2009;101(13):928–37. https://doi.org/10.1093/jnci/djp147.

    Article  PubMed  Google Scholar 

  67. Bowers DC, McNeil DE, Liu Y, Yasui Y, Stovall M, Gurney JG, et al. Stroke as a late treatment effect of Hodgkin’s disease: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2005;23(27):6508–15. https://doi.org/10.1200/JCO.2005.15.107.

    Article  PubMed  Google Scholar 

  68. Sharabi Y, Dendi R, Holmes C, Goldstein DS. Baroreflex failure as a late sequela of neck irradiation. Hypertension. 2003;42(1):110–6. https://doi.org/10.1161/01.hyp.0000077441.45309.08.

    Article  CAS  PubMed  Google Scholar 

  69. Aung T, Fan W, Krishnamurthy M. Recurrent syncope, orthostatic hypotension and volatile hypertension: think outside the box. J Community Hosp Intern Med Perspect. 2013;3(2). https://doi.org/10.3402/jchimp.v3i2.20741.

    Article  Google Scholar 

  70. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose–volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3):S77–85. https://doi.org/10.1016/j.ijrobp.2009.04.093.

    Article  PubMed  Google Scholar 

  71. Steingart RM, Weinstein H, Sasso J, Jones LW, Johnson M, Chen C, et al. Pretherapy cardiology evaluation. In: Hermann J, editor. Clinical cardio-oncology. 1st ed. Philadelphia: Elsevier; 2016. p. 345–78.

    Chapter  Google Scholar 

  72. Denlinger CS, Sanft T, Baker KS, Broderick G, Demark-Wahnefried W, Friedman DL, et al. Survivorship, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(10):1216–1247. https://doi.org/10.6004/jnccn.2018.0078.

    Article  CAS  Google Scholar 

  73. Gupta D, Pun SC, Verma S, Steingart RM. Radiation-induced coronary artery disease: a second survivorship challenge? Future Oncol. 2015;11(14):2017–20.

    Article  CAS  Google Scholar 

  74. • Oikonomou EK, Athanasopoulou SG, Kampaktsis PN, Kokkinidis DG, Papanastasiou CA, Feher A, et al. Development and validation of a clinical score for cardiovascular risk stratification of long-term childhood cancer survivors. Oncologist. 2018;23(8):965–73. https://doi.org/10.1634/theoncologist.2017-0502. A risk model was developed in this study to predict the risk of cardiovascular mortality among long-term childhood cancer survivors, which demonstrated that a history of radiation was one of the strongest predictor of outcomes.

    Article  Google Scholar 

  75. • Chow EJ, Chen Y, Kremer LC, Breslow NE, Hudson MM, Armstrong GT, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol. 2015;33(5):394–402. https://doi.org/10.1200/JCO.2014.56.1373. This study shows the development of risk assessment models that incorporated chest radiotherapy for predicting clinical heart failure, up to 40 years of age, among long-term childhood cancer survivors. Comparison of risk with matched siblings was also demonstrated. The risk models are currently in clinical use.

    Article  Google Scholar 

  76. Wu W, Masri A, Popovic ZB, Smedira NG, Lytle BW, Marwick TH, et al. Long-term survival of patients with radiation heart disease undergoing cardiac surgery: a cohort study. Circulation. 2013;127(14):1476–85. https://doi.org/10.1161/CIRCULATIONAHA.113.001435.

    Article  PubMed  Google Scholar 

  77. Bertog SC, Thambidorai SK, Parakh K, Schoenhagen P, Ozduran V, Houghtaling PL, et al. Constrictive pericarditis: etiology and cause-specific survival after pericardiectomy. J Am Coll Cardiol. 2004;43(8):1445–52. https://doi.org/10.1016/j.jacc.2003.11.048.

    Article  PubMed  Google Scholar 

  78. Brown ML, Schaff HV, Sundt TM. Conduit choice for coronary artery bypass grafting after mediastinal radiation. J Thorac Cardiovasc Surg. 2008;136(5):1167–71. https://doi.org/10.1016/j.jtcvs.2008.07.005.

    Article  PubMed  Google Scholar 

  79. Desai MY, Wu W, Masri A, Popovic ZB, Agarwal S, Smedira NG, et al. Increased aorto-mitral curtain thickness independently predicts mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. Ann Thorac Surg. 2014;97(4):1348–55. https://doi.org/10.1016/j.athoracsur.2013.12.029.

    Article  PubMed  Google Scholar 

  80. Desai MY, Karunakaravel K, Wu W, Agarwal S, Smedira NG, Lytle BW, et al. Pulmonary fibrosis on multidetector computed tomography and mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2014;148(2):475–81 e3. https://doi.org/10.1016/j.jtcvs.2013.08.087.

    Article  PubMed  Google Scholar 

  81. Chirakarnjanakorn S, Popovic ZB, Wu W, Masri A, Smedira NG, Lytle BW, et al. Impact of long-axis function on cardiac surgical outcomes in patients with radiation-associated heart disease. J Thorac Cardiovasc Surg. 2015;149(6):1643–51 e1–2. https://doi.org/10.1016/j.jtcvs.2015.01.045.

    Article  PubMed  Google Scholar 

  82. van Son JA, Noyez L, van Asten WN. Use of internal mammary artery in myocardial revascularization after mediastinal irradiation. J Thorac Cardiovasc Surg. 1992;104(6):1539–44.

    PubMed  Google Scholar 

  83. Reed GW, Masri A, Griffin BP, Kapadia SR, Ellis SG, Desai MY. Long-term mortality in patients with radiation-associated coronary artery disease treated with percutaneous coronary intervention. Circ Cardiovasc Interv. 2016;9(6):e003484. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003483.

  84. Fender EA, Liang JJ, Sio TT, Stulak JM, Lennon RJ, Slusser JP, et al. Percutaneous revascularization in patients treated with thoracic radiation for cancer. Am Heart J. 2017;187:98–103. https://doi.org/10.1016/j.ahj.2017.02.014.

    Article  PubMed  Google Scholar 

  85. Liang JJ, Sio TT, Slusser JP, Lennon RJ, Miller RC, Sandhu G, et al. Outcomes after percutaneous coronary intervention with stents in patients treated with thoracic external beam radiation for cancer. JACC Cardiovasc Interv. 2014;7(12):1412–20. https://doi.org/10.1016/j.jcin.2014.05.035.

    Article  PubMed  Google Scholar 

  86. Paven E, Urena M, Cimadevilla C, Dilly MP, Lepage L, Verdonk C, et al. Management of radiation-induced valvular heart disease in the modern area. Arch Cardiovasc Dis Suppl. 2018;10(1):84. https://doi.org/10.1016/j.acvdsp.2017.11.308.

    Article  Google Scholar 

  87. Crestanello JA, McGregor CG, Danielson GK, Daly RC, Dearani JA, Orszulak TA, et al. Mitral and tricuspid valve repair in patients with previous mediastinal radiation therapy. Ann Thorac Surg. 2004;78(3):826–31; discussion −31. https://doi.org/10.1016/j.athoracsur.2004.04.008.

    Article  Google Scholar 

  88. Dijos M, Reynaud A, Leroux L, Reant P, Cornolle C, Roudaut R, et al. Efficacy and follow-up of transcatheter aortic valve implantation in patients with radiation-induced aortic stenosis. Open Heart. 2015;2(1):e000252. https://doi.org/10.1136/openhrt-2015-000252.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Buzzatti N, Denti P, Schiavi D, Del Castillo G, Scarfo I, La Canna G, et al. Transcatheter mitral repair for radiation-induced mitral regurgitation: a case series [abstract]. EuroIntervention. 2016; EuroPCR Book of Abstracts 2016.

  90. George TJ, Arnaoutakis GJ, Beaty CA, Kilic A, Baumgartner WA, Conte JV. Contemporary etiologies, risk factors, and outcomes after pericardiectomy. Ann Thorac Surg. 2012;94(2):445–51. https://doi.org/10.1016/j.athoracsur.2012.03.079.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Murashita T, Schaff HV, Daly RC, Oh JK, Dearani JA, Stulak JM, et al. Experience with pericardiectomy for constrictive pericarditis over eight decades. Ann Thorac Surg. 2017;104(3):742–50. https://doi.org/10.1016/j.athoracsur.2017.05.063.

    Article  PubMed  Google Scholar 

  92. Uriel N, Vainrib A, Jorde UP, Cotarlan V, Farr M, Cheema FH, et al. Mediastinal radiation and adverse outcomes after heart transplantation. J Heart Lung Transplant. 2010;29(3):378–81. https://doi.org/10.1016/j.healun.2009.08.011.

    Article  PubMed  Google Scholar 

  93. Al-Kindi SG, Oliveira GH. Heart transplantation outcomes in radiation-induced restrictive cardiomyopathy. J Card Fail. 2016;22(6):475–8. https://doi.org/10.1016/j.cardfail.2016.03.014.

    Article  PubMed  Google Scholar 

  94. Kasivisvanathan V, Thapar A, Davies KJ, Dharmarajah B, Shalhoub J, Davies AH. Periprocedural outcomes after surgical revascularization and stenting for postradiotherapy carotid stenosis. J Vasc Surg. 2012;56(4):1143–52 e2. https://doi.org/10.1016/j.jvs.2012.04.044.

    Article  PubMed  Google Scholar 

  95. Ravin RA, Gottlieb A, Pasternac K, Cayne N, Schneider D, Krishnan P, et al. Carotid artery stenting may be performed safely in patients with radiation therapy-associated carotid stenosis without increased restenosis or target lesion revascularization. J Vasc Surg. 2015;62(3):624–30. https://doi.org/10.1016/j.jvs.2015.04.390.

    Article  PubMed  Google Scholar 

  96. Huang MP, Fang HY, Chen CY, Tan TY, Kuo YL, Hsieh IC, et al. Long-term outcomes of carotid artery stenting for radiation-associated stenosis. Biom J. 2013;36(3):144–9. https://doi.org/10.4103/2319-4170.113232.

    Article  Google Scholar 

  97. Maraldo MV, Brodin NP, Vogelius IR, Aznar MC, Munck Af Rosenschold P, Petersen PM, et al. Risk of developing cardiovascular disease after involved node radiotherapy versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;83(4):1232–7. https://doi.org/10.1016/j.ijrobp.2011.09.020.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Gupta MD MPH.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee Chuy, K., Nahhas, O., Dominic, P. et al. Cardiovascular Complications Associated with Mediastinal Radiation. Curr Treat Options Cardio Med 21, 31 (2019). https://doi.org/10.1007/s11936-019-0737-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0737-0

Keywords

Navigation