Skip to main content

Advertisement

Log in

Management of Right Ventricular Failure in Pulmonary Hypertension (and After LVAD Implantation)

  • Valvular Heart Disease (A Desai and P O'Gara, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion Statement

Right ventricular failure (RVF) is increasingly recognized as a complicating feature of a number of disease states, including pulmonary arterial hypertension (PAH) and advanced heart failure. It not only contributes to symptoms and complicates management, but also dramatically impacts prognosis. In PAH, early disease detection and institution of PAH therapy can prevent or delay RVF. Once established, therapy for RVF focuses on optimizing afterload reduction with PAH therapy, controlling volume, and judiciously using inotropic support when needed. In patients undergoing implantation of a LVAD, preoperative assessment and management of RVF is critical. Risk factors for the development of RVF after LVAD have been described, and may identify a population best managed with biventricular support. Postoperative management of RVF focuses on supportive therapy, judicious use of inotropes and volume management. Ongoing research may yield insights into specific therapies to prevent or reverse RVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    Article  PubMed  Google Scholar 

  2. Thenappan T, Shah SJ, Rich S, et al. A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J. 2007;30:1103–10.

    Article  PubMed  CAS  Google Scholar 

  3. Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54 Suppl 1:S43–54.

    Article  PubMed  Google Scholar 

  4. Rich S, Dantzer DR, Ayres SM, et al. Primary pulmonary hypertension: a national prospective study. Ann Intern Med. 1987;107:216–23.

    Article  PubMed  CAS  Google Scholar 

  5. Farber H. Pathophysiology of pulmonary arterial hypertension. In: Hill NS, Farber HW, editors. Pulmonary hypertension. New Jersey: Humana Press; 2010. p. 51–72.

    Google Scholar 

  6. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association Developed in Collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;5300:1573–619.

    Article  Google Scholar 

  7. Noordegraaf AV, Galie N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev. 2011;20:243–53. A comprehensive summary of current evidence regarding the use of noninvasive measurements of RV function in the management and prognosis of PAH patients.

    Article  Google Scholar 

  8. Stone AC, Klinger JR. The right ventricle in pulmonary hypertension. In: Hill NS, Farber HW, editors. Pulmonary hypertension. New Jersey: Humana Press; 2010. p. 93–125.

    Google Scholar 

  9. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension: results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    Article  PubMed  Google Scholar 

  10. Sandoval J, Bauerle O, Palomar A, et al. Survival in primary pulmonary hypertension: validation of a prognostic equation. Circulation. 1994;89:1733–44.

    Article  PubMed  CAS  Google Scholar 

  11. Sitoban O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension. Prognostic factors and survival. J Am Coll Cardiol. 2002;40:780–8.

    Article  Google Scholar 

  12. McLaughlin VV, Shillington A, Rich A, et al. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation. 2002;106:1477–82.

    Article  PubMed  CAS  Google Scholar 

  13. Pasque MK, Trulock EP, Cooper JD, et al. Single lung transplantation for pulmonary hypertension: single institution experience in 34 patients. Circulation. 1995;92:2252–8.

    Article  PubMed  CAS  Google Scholar 

  14. Menzel T, Wagner S, Kramm T, et al. Pathophysiology of impaired right and left ventricular function in chronic thromboembolic pulmonary hypertension. Changes after pulmonary thromboendarterectomy. Chest. 2000;118:897–903.

    Article  PubMed  CAS  Google Scholar 

  15. Hinderliter AL, Willis IV PW, Long W, et al. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84:481–4.

    Article  PubMed  CAS  Google Scholar 

  16. Sitbon O, Gressin V, Speich R, et al. Bosentan for the treatment of human immunodeficiency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;170:1212–7.

    Article  PubMed  Google Scholar 

  17. Dyer KL et al. Use of mycocardial performance index in pediatric pts with IPAH. J Am Soc Echocardiogr. 2006;19:21–7.

    Article  PubMed  Google Scholar 

  18. Allanore Y, Meune C, Vignaux O, et al. Bosentan increases myocardial perfusion and function in systemic sclerosis: a magnetic resonance imaging and tissue-Doppler echography study. J Rheumatol. 2006;33:2464–9.

    PubMed  CAS  Google Scholar 

  19. Michelakis ED, Tymchak W, Noga M, et al. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation. 2003;108:2066–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116:238–48.

    Article  PubMed  CAS  Google Scholar 

  21. Tedford RJ, Hemnes AR, Russel SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1:213–9.

    Article  PubMed  CAS  Google Scholar 

  22. Haddad F, Ashley E, Michelakis D, et al. New insights for the diagnosis and management of right ventricular failure, from molecular imaging to targeted right ventricular therapy. Curr Opin Cardiol. 2010;25:131–40.

    PubMed  Google Scholar 

  23. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  PubMed  CAS  Google Scholar 

  24. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  PubMed  CAS  Google Scholar 

  25. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  26. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24. Describes incidence and risk factors for right ventricular dysfunction in the 2nd generation continuous flow ventricular assist devices; prior descriptions of right ventricular dysfunction in mechanical circulatory support had been with pulsatile devices.

    Article  PubMed  Google Scholar 

  27. Matthews JC, Koelling TM, Pagani FD, et al. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  Google Scholar 

  28. Patel ND, Weiss ES, Schaffer J, et al. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann Thorac Surg. 2008;86:832–40.

    Article  PubMed  Google Scholar 

  29. Baumwol J, Macdonald PS, Keogh AM, et al. Right heart failure and "failure to thrive" after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–95.

    PubMed  Google Scholar 

  30. Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  31. Santambrogio L, Bianchi T, Fuardo M, et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact Cardiovasc Thorac Surg. 2006;5:379–82.

    Article  PubMed  Google Scholar 

  32. Farrar DJ, Compton PG, Hershon JJ, et al. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9:89–102.

    Article  PubMed  CAS  Google Scholar 

  33. Farrar DJ. Ventricular interactions during mechanical circulatory support. Semin Thorac Cardiovasc Surg. 1994;6:163–8.

    PubMed  CAS  Google Scholar 

  34. Van Meter CH. Right heart failure: best treated by avoidance. Ann Thorac Surg. 2001;71:S220–2.

    Article  PubMed  Google Scholar 

  35. Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.

    Article  PubMed  Google Scholar 

  36. Argenziano M, Choudhri AF, Moazami N. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65:340–5.

    Article  PubMed  CAS  Google Scholar 

  37. Tedford RJ, Hemnes AR, Russell SD, et al. PDE5 inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1:213–9.

    Article  PubMed  CAS  Google Scholar 

  38. Boeken U, Feindt P, Litmathe J, et al. Intra-aortic balloon pump in patients with right ventricular insufficiency after cardiac surgery: parameters to predict failure of IABP support. J Thorac Cardiovasc Surg. 2009;57:324–8.

    Article  CAS  Google Scholar 

  39. Krishan K, Nair A, Pinney S, et al. Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41:213–7.

    Article  PubMed  Google Scholar 

  40. Saeed D, Kidambi T, Shalli S, et al. Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J Heart Lung Transplant. 2011;20:530–5.

    Article  Google Scholar 

  41. Piacentino V, Troupes CD, Ganapathi AM, et al. Clinical impact of concomitant tricuspid valve procedures during left ventricular assist device implantation. Ann Thorac Surg. 2011;92:1414–8.

    Article  PubMed  Google Scholar 

  42. Maltais S, Topilsky Y, Tchantchaleishvili V, et al. Surgical treatment of tricuspid vavle insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices. J Thorac Cardiovasc Surg. 2012;143:1370–6.

    Article  PubMed  Google Scholar 

  43. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141–56. The most up to date summary of risk factors and outcomes of patients with continuous flow ventricular assist devices.

    Article  PubMed  Google Scholar 

  44. Fitzpatrick JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137:971–7.

    Article  PubMed  Google Scholar 

  45. Morgan JA, John R, Lee BJ, et al. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77:859–63.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Brittany Palmer declares that she has no conflict of interest. Dr. Brent Lampert declares that he has no conflict of interest. Dr. Michael A. Mathier declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Mathier MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, B., Lampert, B. & Mathier, M.A. Management of Right Ventricular Failure in Pulmonary Hypertension (and After LVAD Implantation). Curr Treat Options Cardio Med 15, 533–543 (2013). https://doi.org/10.1007/s11936-013-0267-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-013-0267-0

Keywords

Navigation