Skip to main content

Advertisement

Log in

Screening for Prostate Cancer—Beyond Total PSA, Utilization of Novel Biomarkers

  • Prostate Cancer (A Kibel, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Urology has been beset by several major trends that have shifted the entire paradigm for prostate cancer screening. These stem from a backlash against overdiagnosis and overtreatment due to prostate-specific antigen (PSA)-based screening efforts and have led national societies to modify their guidelines. More importantly, the public outcry has shifted the focus of early detection from an effort to diagnose any and all prostate cancers to an effort to diagnose clinically significant prostate cancers at an early stage. This review provides an update on contemporary biomarkers for prostate cancer that may be used to supplement PSA-based screening approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Andriole GL, Crawford ED, Grubb 3rd RL, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360(13):1310–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384(9959):2027–35. The risk of dying from prostate cancer decreased significantly after just 11 years of follow-up in this pivotal PSA screening trial. After 13 years of follow-up, one prostate cancer death was prevented for every 781 men screened for prostate cancer with PSA.

    Article  PubMed  Google Scholar 

  3. Chou R, LeFevre ML. Prostate cancer screening—the evidence, the recommendations, and the clinical implications. JAMA J Am Med Assoc. 2011;306(24):2721–2.

    Article  CAS  Google Scholar 

  4. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  5. Stephenson RA, Stanford JL. Population-based prostate cancer trends in the United States: patterns of change in the era of prostate-specific antigen. World J Urol. 1997;15(6):331–5.

    Article  CAS  PubMed  Google Scholar 

  6. Draisma G, Boer R, Otto SJ, et al. Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst. 2003;95(12):868–78.

    Article  PubMed  Google Scholar 

  7. Catalona WJ, Partin AW, Sanda MG, et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol. 2011;185(5):1650–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8.

    Article  PubMed  Google Scholar 

  9. Mikolajczyk SD, Marker KM, Millar LS, et al. A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Res. 2001;61(18):6958–63.

    CAS  PubMed  Google Scholar 

  10. Lazzeri M, Haese A, de la Taille A, et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2–10 ng/ml: a multicentric European study. Eur Urol. 2013;63(6):986–94. In this large multicenter prospective cohort study [-2]proPSA and the prostate health index demonstrated improved prediction over using just total PSA and free PSA. Using decision curve analyses, it was estimated that use of these new tests yielded an optimal benefit when the likelihood of having a positive biopsy was between 30 and 60%.

    Article  CAS  PubMed  Google Scholar 

  11. Sokoll LJ, Sanda MG, Feng Z, et al. A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 2010;19(5):1193–200.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Naya Y, Okihara K. Role of complexed PSA in the early detection of prostate cancer. J Natl Compr Canc Netw. 2004;2(3):209–12.

    PubMed  Google Scholar 

  13. Rhodes T, Jacobson DJ, McGree ME, et al. Longitudinal changes of benign prostate-specific antigen and [-2]proprostate-specific antigen in seven years in a community-based sample of men. Urology. 2012;79(3):655–61.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rhodes T, Jacobson DJ, McGree ME, et al. Benign prostate specific antigen distribution and associations with urological outcomes in community dwelling black and white men. J Urol. 2012;187(1):87–91.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hori S, Blanchet JS, McLoughlin J. From prostate-specific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int. 2013;112(6):717–28.

    Article  PubMed  Google Scholar 

  16. Peltola MT, Niemela P, Vaisanen V, et al. Intact and internally cleaved free prostate-specific antigen in patients with prostate cancer with different pathologic stages and grades. Urology. 2011;77(4):1009. e1001-1008.

    Article  PubMed  Google Scholar 

  17. Vickers AJ, Gupta A, Savage CJ, et al. A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening. Cancer Epidemiol Biomarkers Prev. 2011;20(2):255–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Vickers AJ, Cronin AM, Roobol MJ, et al. A four-kallikrein panel predicts prostate cancer in men with recent screening: data from the European Randomized Study of Screening for Prostate Cancer. Rotterdam Clin Cancer Res. 2010;16(12):3232–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  20. Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. [see comment]. Eur Urol. 2003;44(1):8–15. discussion 15–16.

    Article  CAS  PubMed  Google Scholar 

  21. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179:1804–10.

    Article  PubMed  Google Scholar 

  22. Fradet Y, Saad F, Aprikian A, et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology. 2004;64(2):311–5. discussion 315–316.

    Article  PubMed  Google Scholar 

  23. Groskopf J, Aubin SM, Deras IL, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52(6):1089–95.

    Article  CAS  PubMed  Google Scholar 

  24. Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer. Eur Urol. 2004;46(2):182–6. discussion 187.

    Article  CAS  PubMed  Google Scholar 

  25. van Gils MP, Hessels D, van Hooij O, et al. The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res. 2007;13(3):939–43.

    Article  PubMed  Google Scholar 

  26. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007;69:532–5.

    Article  PubMed  Google Scholar 

  27. Tombal B, Ameye F, de la Taille A, et al. Biopsy and treatment decisions in the initial management of prostate cancer and the role of PCA3; a systematic analysis of expert opinion. World J Urol. 2011.

  28. Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54:1081–8.

    Article  PubMed  Google Scholar 

  29. Ramos CG, Valdevenito R, Vergara I, Anabalon P, Sanchez C, Fulla J. PCA3 sensitivity and specificity for prostate cancer detection in patients with abnormal PSA and/or suspicious digital rectal examination. First Latin American experience. Urol Oncol. 2012.

  30. Luo Y, Gou X, Huang P, Mou C. The PCA3 test for guiding repeat biopsy of prostate cancer and its cut-off score: a systematic review and meta-analysis. Asian J Androl. 2014;16(3):487–92.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wei JT, Feng Z, Partin AW, et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J Clin Oncol. 2014;32(36):4066–72. In this NCI funded clinical study, PCA3, using discrete cutoffs, was validated in the setting of an initial prostate biopsy as well as a repeat prostate biopsy to aid in the diagnosis of prostate cancer. When PCA3 is added to clinical risk factors, as captured by the PCPT nomogram, it significantly improved the detection of any prostate cancer as well as high grade prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  32. Hansen J, Auprich M, Ahyai SA, et al. Initial prostate biopsy: development and internal validation of a biopsy-specific nomogram based on the prostate cancer antigen 3 assay. Eur Urol. 2013;63(2):201–9.

    Article  PubMed  Google Scholar 

  33. Ruffion A, Devonec M, Champetier D, et al. PCA3 and PCA3-based nomograms improve diagnostic accuracy in patients undergoing first prostate biopsy. Int J Mol Sci. 2013;14(9):17767–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vedder MM, de Bekker-Grob EW, Lilja HG, et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol. 2014.

  35. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(644).

  36. Tomlins SA. Urine PCA3 and TMPRSS2:ERG using cancer-specific markers to detect cancer. Eur Urol. 2014;65(3):543–5.

    Article  CAS  PubMed  Google Scholar 

  37. Young A, Palanisamy N, Siddiqui J, et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol. 2012;138(5):685–96.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tomlins SA, Aubin SM, Siddiqui J, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Leyten GH, Hessels D, Jannink SA, et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2014;65(3):534–42.

    Article  CAS  PubMed  Google Scholar 

  40. Chan SW, Nguyen PN, Violette P, et al. Early detection of clinically significant prostate cancer at diagnosis: a prospective study using a novel panel of TMPRSS2:ETS fusion gene markers. Cancer Med. 2013;2(1):63–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tallon L, Luangphakdy D, Ruffion A, et al. Comparative evaluation of urinary PCA3 and TMPRSS2: ERG scores and serum PHI in predicting prostate cancer aggressiveness. Int J Mol Sci. 2014;15(8):13299–316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8.

    Article  CAS  PubMed  Google Scholar 

  43. Mehra R, Shi Y, Udager AM, et al. A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia. 2014;16(12):1121–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Prensner JR, Zhao S, Erho N, et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 2014;15(13):1469–80. Long non-coding RNA have increasingly been identified as having functions other than transcription and typifies how biology and biomarker discovery converges. SChLAP1, a long non-coding RNA, was identified as the highest-ranked overexpressed gene in cancers with metastatic progression, giving it potential to be a highly prognostic biomarker.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Todd Morgan is on the advisory board for Myriad Genetics, Genomic Health, and MDx Health.

Ganesh Palapattu is on the advisory board for Neogenomics.

John Wei declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Wei.

Additional information

This article is part of the Topical Collection on Prostate Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, T., Palapattu, G. & Wei, J. Screening for Prostate Cancer—Beyond Total PSA, Utilization of Novel Biomarkers. Curr Urol Rep 16, 63 (2015). https://doi.org/10.1007/s11934-015-0537-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-015-0537-3

Keywords

Navigation