Skip to main content

Advertisement

Log in

Cell-Based Therapy for the Deficient Urinary Sphincter

  • Surgical Techniques (J Cadeddu and A Stenzl, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

When sterile culture techniques of mammalian cells first became state of the art, there was tremendous anticipation that such cells could be eventually applied for therapeutic purposes. The discovery of adult human stem or progenitor cells further motivated scientists to pursue research in cell-based therapies. Although evidence from animal studies suggests that application of cells yields measurable benefits, in urology and many other disciplines, progenitor-cell-based therapies are not yet routinely clinically available. Stress urinary incontinence (SUI) is a condition affecting a large number of patients. The etiology of SUI includes, but is not limited to, degeneration of the urinary sphincter muscle tissue and loss of innervation, as well as anatomical and biomechanical causes. Therefore, different regimens were developed to treat SUI. However, at present, a curative functional treatment is not at hand. A progenitor-cell-based therapy that can tackle the etiology of incontinence, rather than the consequences, is a promising strategy. Therefore, several research teams have intensified their efforts to develop such a therapy for incontinence. Here, we introduce candidate stem and progenitor cells suitable for SUI treatment, show how the functional homogeneity and state of maturity of differentiated cells crucial for proper tissue integration can be assessed electrophysiologically prior to their clinical application, and discuss the trophic potential of adult mesenchymal stromal (or stem) cells in regeneration of neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASC:

Adipose-derived stem cells (alias atMSC)

bmMSC:

Bone marrow-derived MSC

ESC:

Embryonic stem cell

iPSC:

Induced pluripotent stem cells

MC:

Muscle cell

MEA:

Micro-electrode array

MP:

Myogenic progenitor

MSC:

Mesenchymal stromal cells, previously termed mesenchymal stem cells

pMSC:

Term placenta-derived MSC

ReST:

Regenerative Sphincter Therapy, an EU supported research network

RiPSC:

RNA-mediated induced pluripotent stem cells

SCI:

Spinal cord injury

SMC:

Smooth muscle cell

SUI:

Stress urinary incontinence

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Botlero R et al. Prevalence and incidence of urinary incontinence in women: review of the literature and investigation of methodological issues. Int J Urol. 2008;15(3):230–4.

    Article  PubMed  Google Scholar 

  2. Koike Y et al. Pathophysiology of urinary incontinence in murine models. Int J Urol. 2013;20(1):64–71.

    Article  PubMed  Google Scholar 

  3. Rovner ES, Wein AJ. Treatment options for stress urinary incontinence. Rev Urol. 2004;6 Suppl 3:S29–47.

    PubMed  Google Scholar 

  4. Miller KL. Stress urinary incontinence in women: review and update on neurological control. J Womens Health (Larchmt). 2005;14(7):595–608.

    Article  Google Scholar 

  5. Kerr LA. Bulking agents in the treatment of stress urinary incontinence: history, outcomes, patient populations, and reimbursement profile. Rev Urol. 2005;7 Suppl 1:S3–S11.

    PubMed  Google Scholar 

  6. Montague DK. Artificial urinary sphincter: long-term results and patient satisfaction. Adv Urol. 2012;2012:835290.

    Article  PubMed  Google Scholar 

  7. Ramalho-Santos M et al. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600.

    Article  PubMed  CAS  Google Scholar 

  8. Fortunel NO et al. Comment on " 'Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science. 2003;302(5644):393. author reply 393.

    Article  PubMed  CAS  Google Scholar 

  9. Evsikov AV. Comment on " 'Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science. 2003;302(5644):393. author reply 393.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.

    Article  PubMed  CAS  Google Scholar 

  11. Golos TG, Giakoumopoulos M. Embryonic stem cell-derived trophoblast differentiation: a comparative review. J Endocrinol. 2013.

  12. Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol. 2013;216(3):R33–45.

    Article  PubMed  CAS  Google Scholar 

  13. Prokhorova TA et al. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 2009;18(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  14. Nussbaum J et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21(7):1345–57.

    Article  PubMed  CAS  Google Scholar 

  15. Rong Z et al. A scalable approach to prevent teratoma formation of human embryonic stem cells. J Biol Chem. 2012;287(39):32338–45.

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;131:861–72.

    Article  Google Scholar 

  17. Takahashi K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  18. Stadtfeld M et al. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    Article  PubMed  CAS  Google Scholar 

  19. Yu J et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  20. Gene therapy clinical trials worldwide, in The Journal of Gene Medicine 2013.

  21. Gene therapy deserves a fresh chance. Nature. 2009;461(7268): p. 1173.

  22. Richards S. Gene therapy arrives in Europe. The Scientist, 2012.

  23. Warren L et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  PubMed  CAS  Google Scholar 

  24. Kim D et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.

    Article  PubMed  CAS  Google Scholar 

  25. Mauro A. Satellite cells of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.

    Article  PubMed  CAS  Google Scholar 

  26. Montarras D et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309(5743):2064–7.

    Article  PubMed  CAS  Google Scholar 

  27. Murphy MM et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 2011;138(17):3625–37.

    Article  PubMed  CAS  Google Scholar 

  28. Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell. 2005;122(5):659–67.

    Article  PubMed  CAS  Google Scholar 

  29. Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004;275(2):375–88.

    Article  PubMed  CAS  Google Scholar 

  30. Yokoyama T et al. Autologous primary muscle-derived cells transfer into the lower urinary tract. Tissue Engineering. 2001;7(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  31. Lee JY et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. International Urogynecology Journal. 2003;14(1):31–7.

    Article  CAS  Google Scholar 

  32. Eberli D et al. Muscle precursor cells for the restoration of irreversibly damaged sphincter function. Cell Transplant. 2012;21(9):2089–98.

    Article  PubMed  Google Scholar 

  33. Strasser H et al. Autologous myoblasts and fibroblasts versus collagen for treatment of stress urinary incontinence in women: a randomised controlled trial. Lancet. 2007;369(9580):2179–86.

    Article  PubMed  CAS  Google Scholar 

  34. Smaldone M, Chancellor M. Muscle derived stem cell therapy for stress urinary incontinence. World Journal of Urology. 2008;26(4):327–32.

    Article  PubMed  Google Scholar 

  35. Kleinert S, Horton R. Retraction–autologous myoblasts and fibroblasts versus collagen [corrected] for treatment of stress urinary incontinence in women: a [corrected] randomised controlled trial. Lancet. 2008;372(9641):789–90.

    Article  PubMed  Google Scholar 

  36. Chapman MR. et al. Sorting single satellite cells from individual myofibers reveals heterogeneity in cell-surface markers and myogenic capacity. Integr Biol (Camb). 2013.

  37. •• Lang R et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. PLoS One. 2013;8(1):e53980. This group from the Bejing Chaoyang Hospital has published a series of studies characterizing urine-derived progenitor or stem cells, referred to as USC, and their differentiation in several types of cells. USC are a very interesting type of stem cells for urologists as they can be collected and prepared w/o invasive regimen. Reportedly they have a broad differentiation and regeneration capacity.

    Article  PubMed  CAS  Google Scholar 

  38. Dominici M et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  PubMed  CAS  Google Scholar 

  39. Felka T et al. Animal serum-free expansion and differentiation of human mesenchymal stromal cells. Cytotherapy. 2010;12(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  40. Pilz GA et al. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 2011;20(4):635–46.

    Article  PubMed  CAS  Google Scholar 

  41. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7

    Article  PubMed  CAS  Google Scholar 

  42. •• Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12(2):126–31. This review is a state-of-the-art article on the biology, experimental and clinical potential of bmMSC. It covers technical aspects of detection and characterization of MSC in vivo and in vitro. It summarizes different functional aspects of MSC including e.g. their immuno-modulary potential, aspects of differentiation of MSC, and trophic actions of MSC.

    Article  PubMed  CAS  Google Scholar 

  43. Covas DT et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642–54.

    Article  PubMed  CAS  Google Scholar 

  44. Zannettino ACW et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214(2):413–21.

    Article  PubMed  CAS  Google Scholar 

  45. Crisan M et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    Article  PubMed  CAS  Google Scholar 

  46. • Parolini O et al. Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells and Development. 2010;19(2):143–54. General information on preparation and clinical applications of pMSC in regard to sphincter regeneration can be found in reference 46.

    Article  PubMed  Google Scholar 

  47. • Moroni L, Fornasari PM. Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. J Cell Physiol. 2013;228(4):680–7. This review gives a state-of-the-art overview on different types of human MSC isolated from different tissues, and discusses their potential clinical use in the context of muscle regeneration

    Article  PubMed  CAS  Google Scholar 

  48. Sudres M et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol. 2006;176(12):7761–7.

    PubMed  CAS  Google Scholar 

  49. Jang MJ et al. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematologica. 2013;129(4):197–206.

    Article  PubMed  CAS  Google Scholar 

  50. • Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5. The authors discuss in this review the concept that MSC may facilitate tissue regeneration by producing locally growth factors that address local progenitors involved in wound healing

    Article  PubMed  CAS  Google Scholar 

  51. Narita Y et al. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res. 2008;333(3):449–59.

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez LV et al. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. PNAS. 2006;103(32):12167–72.

    Article  PubMed  CAS  Google Scholar 

  53. Tian H et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials. 2010;31(5):870–7.

    Article  PubMed  CAS  Google Scholar 

  54. Wang D et al. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem. 2004;279(42):43725–34.

    Article  PubMed  CAS  Google Scholar 

  55. Gunetti M et al. Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence. PLoS One. 2012;7(9):e45538.

    Article  PubMed  CAS  Google Scholar 

  56. Rowlands AS, George PA, Cooper-White JJ. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol. 2008;295(4):C1037–44.

    Article  PubMed  CAS  Google Scholar 

  57. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15(3):100–8.

    Article  PubMed  CAS  Google Scholar 

  58. Dezawa M et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309(5732):314–7.

    Article  PubMed  CAS  Google Scholar 

  59. • Drost AC et al. In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann N Y Acad Sci. 2009;1176:135–43. This study investigates the myogenic differentiation potential of bmMSC in a rat model of cell differentiation

    Article  PubMed  CAS  Google Scholar 

  60. Chan J et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells. 2006;24(8):1879–91.

    Article  PubMed  CAS  Google Scholar 

  61. Mizuno H et al. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg. 2002;109(1):199–209. discussion 210–1.

    Article  PubMed  Google Scholar 

  62. Gang EJ et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22(4):617–24.

    Article  PubMed  Google Scholar 

  63. Fukuda K. Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant. 2003;32 Suppl 1:S25–7.

    Article  PubMed  CAS  Google Scholar 

  64. Ulrich C. et al. Low osteogenic differentiation potential of placenta-derived mesenchymal stromal cells correlates with low expression of the transcription factors Runx2 and Twist2. Stem Cells Dev. 2013 (in revision).

  65. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  PubMed  CAS  Google Scholar 

  66. Battula VL et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica. 2009;94(2):173–84.

    Article  PubMed  CAS  Google Scholar 

  67. Chen L et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886.

    Article  PubMed  Google Scholar 

  68. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  PubMed  CAS  Google Scholar 

  69. Puissant B et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29.

    Article  PubMed  Google Scholar 

  70. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med. 2006;231(1):39–49.

    CAS  Google Scholar 

  71. Dufourcq P et al. Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells. 2008;26(11):2991–3001.

    Article  PubMed  Google Scholar 

  72. Song H et al. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. PNAS. 2010;107(8):3329–34. PNAS 107(8): 3329–3334.

    Article  PubMed  CAS  Google Scholar 

  73. Pillekamp F et al. Physiological differences between transplanted and host tissue cause functional decoupling after in vitro transplantation of human embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem. 2009;23:65–74.

    Article  PubMed  CAS  Google Scholar 

  74. Heubach JF et al. Electrophysiological properties of human mesenchymal stem cells. J Physiol. 2003;554(3):659–72.

    Article  PubMed  Google Scholar 

  75. Sundelacruz S, Levin M. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev and Rep. 2009;5:231–46.

    Article  Google Scholar 

  76. Fry CH, Meng E, Young JS. The physiological function of lower urinary tract smooth muscle. Auton Neurosci Basic Clin. 2010;154:3–13.

    Article  CAS  Google Scholar 

  77. Bang OY et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82.

    Article  PubMed  Google Scholar 

  78. Teixeira FG, et al. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013.

  79. Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005;191(2):344–60.

    Article  PubMed  CAS  Google Scholar 

  80. Jiang J et al. Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res. 2010;66(1):46–52.

    Article  PubMed  CAS  Google Scholar 

  81. Crigler L et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64.

    Article  PubMed  CAS  Google Scholar 

  82. Nakano N et al. Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett. 2010;483(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  83. Salgado AJ et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    Article  PubMed  CAS  Google Scholar 

  84. Gu W et al. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology. 2010;30(3):205–17.

    Article  PubMed  Google Scholar 

  85. Park HW et al. Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia. 2010;58(9):1118–32.

    Article  PubMed  Google Scholar 

  86. Zurita M, Vaquero J. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neurosci Lett. 2006;402(1–2):51–6.

    Article  PubMed  CAS  Google Scholar 

  87. Komatsu K et al. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res. 2010;1334:84–92.

    Article  PubMed  CAS  Google Scholar 

  88. Kurozumi K et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104.

    Article  PubMed  CAS  Google Scholar 

  89. Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–12.

    Article  PubMed  CAS  Google Scholar 

  90. Wei X et al. IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells. 2009;27(2):478–88.

    Article  PubMed  CAS  Google Scholar 

  91. Koh SH et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res. 2008;1229:233–48.

    Article  PubMed  CAS  Google Scholar 

  92. Lee JS et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.

    Article  PubMed  Google Scholar 

  93. De Keyser J. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;58(4):653–4. author reply 654–5.

    Article  PubMed  Google Scholar 

  94. Saito F et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci. 2012;30(2):127–36.

    PubMed  Google Scholar 

  95. Buhring HJ et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci. 2007;1106:262–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tanja Abruzzese and Jan Maerz for their excellent technical help and Chaim Goziga for help in preparation of the artwork. Our own work briefly summarized in this review was in part supported by grants from the BMBF, DFG, fortüne, and Landesstiftung BW, and in part by institutional funding.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Melanie L. Hart reported no potential conflicts of interest relevant to this article.

Dr. Katharina M. H. Neumayer reported no potential conflicts of interest relevant to this article.

Dr. Martin Vaegler reported no potential conflicts of interest relevant to this article.

Dr. Lisa Daum reported no potential conflicts of interest relevant to this article.

Dr. Bastian Amend reported no potential conflicts of interest relevant to this article.

Dr. Karl D. Sievert reported no potential conflicts of interest relevant to this article.

Dr. Simone Di Giovanni reported no potential conflicts of interest relevant to this article.

Dr. Udo Kraushaar reported no potential conflicts of interest relevant to this article.

Dr. Elke Guenther reported no potential conflicts of interest relevant to this article.

Dr. Arnulf Stenzl serves as a Section Editor for Current Urology Reports.

Dr. Wilhelm K. Aicher reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm K. Aicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, M.L., Neumayer, K.M.H., Vaegler, M. et al. Cell-Based Therapy for the Deficient Urinary Sphincter. Curr Urol Rep 14, 476–487 (2013). https://doi.org/10.1007/s11934-013-0352-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-013-0352-7

Keywords

Navigation