Skip to main content

Advertisement

Log in

Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage

  • Osteoarthritis (M Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage.

Recent Findings

3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models.

Summary

Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dieleman JL, Baral R, Birger M, et al. US spending on personal health care and public health, 1996–2013. Jama. 2016;316:2627.

    Article  PubMed  Google Scholar 

  2. Bowland P, Ingham E, Jennings L, et al. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proc Inst Mech Eng H. 2015;229:879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang L, Detamore MS. Tissue engineering the mandibular condyle. Tissue Eng. 2007;13:1955–71.

    Article  CAS  PubMed  Google Scholar 

  4. • Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl med. 2016;8:358ra127. LP-358ra127. This paper describes the development and testing of a novel high mineral content, high flexibility polymer composite for 3D printing.

    Article  PubMed  Google Scholar 

  5. • Hung BP, Naved BA, Nyberg EL, et al. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng. 2016;2:1806–16. This paper describes the development of a mineral polymer composite material with tunable osteogenic protperties that can be manufactureed via 3D printing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nyberg E, Rindone A, Dorafshar A, et al. Comparison of 3D-printed poly-ε-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng A. 2016;23(3):503–14.

  7. Cheng A, Humayun A, Cohen DJ, et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6:45007.

  8. Muth JT, Dixon PG, Woish L, et al. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc Natl Acad Sci. 2017;114:1832–7.

    Article  CAS  PubMed  Google Scholar 

  9. Shuai C, Gao C, Nie Y, et al. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology. 2011;22:285703.

    Article  PubMed  Google Scholar 

  10. • Hollister SJ, Flanagan CL, Morrison RJ, et al. Integrating image-based design and 3D biomaterial printing to create patient specific devices within a design control framework for clinical translation. ACS Biomater. Sci. Eng. 2016;2:1827–36. This paper describes the development, verification, and validation of an orthopedic scaffold using a translation focused design control approach.

    Article  CAS  Google Scholar 

  11. Shimomura K, Moriguchi Y, Ando W, et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part a. 2014;20:2291–304.

    Article  CAS  PubMed  Google Scholar 

  12. Alexander PG, Gottardi R, Lin H, et al. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med. 2014;239(9):1080–95.

  13. Bian W, Lian Q, Li D, et al. Morphological characteristics of cartilage-bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold. Biomed Eng Online. 2016;15:82.

  14. Palaganas JO, de Leon AC, Mangadlao JD, et al. Facile preparation of photocurable silicon composite for 3D printing. Macromol Mater Eng. 2017;302:1–9.

    Article  Google Scholar 

  15. Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8:594–600.

    Article  PubMed  PubMed Central  Google Scholar 

  16. •• Hollister SJ, Flanagan CL, Zopf DA, et al. Design control for clinical translation of 3D printed modular scaffolds. Ann Biomed Eng. 2015;43:774–86. This review outlines the benefits and application of a design control approach to tissue engineering in lieu of an exclusively discovery-driven approach.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duda GN, Grainger DW, Frisk ML, et al. Changing the mindset in life sciences toward translation: a consensus. Sci Transl med. 2014;6:1–7.

    Article  Google Scholar 

  18. Volk H, Stevens MM, Mooney DJ, et al. Key elements for nourishing the translational research environment. Sci Transl med. 2015;7:1–5.

    Article  Google Scholar 

  19. •• Bhumiratana S, Bernhard JC, Alfi DM, et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl med. 2016;8:343ra83. This study demonstrates a complete, patient spesific tissue engineering treatment scheme in a preclinical porcine model.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Challis VJ, Guest JK, Grotowski JF, et al. Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int J Solids Struct Elsevier Ltd. 2012;49:3397–408.

    Article  Google Scholar 

  21. Kang H, Lin CY, Hollister SJ. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscip Optim. 2010;42:633–44.

    Article  Google Scholar 

  22. Wieding J, Wolf A, Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater Elsevier. 2014;37:56–68.

    Article  CAS  Google Scholar 

  23. Hendrikson WJ, Deegan AJ, Yang Y, et al. Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front Bioeng Biotechnol. 2017;5:1–11.

    Google Scholar 

  24. Uth N, Mueller J, Smucker B, et al. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication. 2017;9:15023.

    Article  Google Scholar 

  25. Mohan N, Gupta V, Sridharan BP, et al. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen med. 2015;10:709–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang S, Chen L, Jiang Y, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9:7236–47.

    Article  CAS  PubMed  Google Scholar 

  27. Murata D, Tokunaga S, Tamura T, et al. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J Orthop Surg res. 2015;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Levingstone TJ, Thompson E, Matsiko A, et al. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater Acta Materialia Inc. 2016;32:149–60.

    Article  CAS  Google Scholar 

  29. Phinney DG, Sensebe L, Sensebé L. Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy. 2013;15:140–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hung BP, Hutton DL, Kozielski KL, et al. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells. 2015;33(9):2773–84.

  31. Batouli S, Miura M, Brahim J, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent res. 2003;82:976–81.

    Article  CAS  PubMed  Google Scholar 

  32. Wegmeyer H, Bröske A-M, Leddin M, et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells dev. 2013;22:2606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rossini A, Frati C, Lagrasta C, et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc res Oxford University Press. 2011;89:650–60.

    CAS  Google Scholar 

  34. Li C, Wu X, Tong J, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell res. Ther. 2015;6:55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kohli N, Wright KT, Sammons RL, et al. An in vitro comparison of the incorporation, growth, and chondrogenic potential of human bone marrow versus adipose tissue mesenchymal stem cells in clinically relevant cell scaffolds used for cartilage repair. Cartilage. 2015;6:252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells dev. 2012;21:2724–52.

    Article  CAS  PubMed  Google Scholar 

  37. Stolzing A, Jones E, McGonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing dev. 2008;129:163–73.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7:335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cosmetic Surgery National Data Bank Statistics. Aesthet Surg J 2015; 35 suppl_2): 1-24.

  40. Vangsness CT, Sternberg H, Harris L. Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: a literature review of different harvest sites. Arthrosc J Arthrosc Relat Surg. 2015;31:1836–43.

    Article  Google Scholar 

  41. Allsopp R. Telomere length and iPSC re-programming: survival of the longest. Cell res Nature Publishing Group. 2012;22:614–5.

    CAS  Google Scholar 

  42. Ko J-Y, Kim K-I, Park S, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials. 2014;35:3571–81.

    Article  CAS  PubMed  Google Scholar 

  43. Kang H, Shih Y-RV, Nakasaki M, et al. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci Adv Am Assoc Adv Sci. 2016;2:e1600691.

    Google Scholar 

  44. Revilla A, González C, Iriondo A, et al. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen med. 2016;10:893–907.

    Article  CAS  PubMed  Google Scholar 

  45. Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mandegar MA, Huebsch N, Frolov EB, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18:541–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown JC, Shang H, Li Y, et al. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng C Methods. 2017;ten.TEC.2016.0377.

  48. Aronowitz JA, Lockhart RA, Hakakian CS, et al. Adipose stromal vascular fraction isolation. Plast Reconstr Surg. 2016;132:932e–9e.

    Article  Google Scholar 

  49. Oberbauer E, Steffenhagen C, Wurzer C, et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (London, England). 2015;4:7.

    Google Scholar 

  50. Soler R, Orozco L, Munar A, et al. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 2016;23:647–54.

    Article  PubMed  Google Scholar 

  51. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.

  52. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two year follow up results. Transplantation. 2014;97(11):e66–8.

  53. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum dis. 2016;19:219–25.

    Article  PubMed  Google Scholar 

  54. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J Rheum dis. 2011;14:211–5.

    Article  Google Scholar 

  55. Wong KL, Lee KBL, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in Varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthrosc J Arthrosc Relat Surg. 2013;29:2020–8.

    Article  Google Scholar 

  56. Lamo-Espinosa JM, Mora G, Blanco JF, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl med. 2016:14, 246.

  57. Vega A, Martín-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells. Transplantation. 2015;99:1681–90.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta PK, Chullikana A, Rengasamy M, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis res Ther. 2016;18:301.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pers Y-M, Rackwitz L, Ferreira R, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl med Alpha Med Press. 2016;5:847–56.

    Article  Google Scholar 

  60. Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.

    Article  CAS  PubMed  Google Scholar 

  61. Koh Y-G, Kwon O-R, Kim Y-S, et al. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthrosc J Arthrosc Relat Surg. 2016;32:97–109.

    Article  Google Scholar 

  62. Park Y-B, Ha C-W, Lee C-H, et al. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl med. 2017;6:613–21.

    Article  CAS  PubMed  Google Scholar 

  63. Giannotti S, Trombi L, Bottai V, et al. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. Goncalves R, editor. PLoS One. 2013;8:e73893.

  64. • Saxer F, Scherberich A, Todorov A, et al. Implantation of stromal vascular fraction pro-genitors at bone fracture sites: from a rat model to a first-in-man study. Stem Cell. 2016;34(12):2956–66. This study demonstrates the safety of using autologous adipose-derived stem cells in the clinic for treatment of osteoporotic bone fractures.

  65. Wuchter P, Vetter M, Saffrich R, et al. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells. Exp Hematol. 2016;44:508–18.

    Article  CAS  PubMed  Google Scholar 

  66. Escobar CH, Chaparro O. Xeno-free extraction, culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Transl med. 2016;5:358–65.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Al-Saqi SH, Saliem M, Quezada HC, et al. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell Tissue Bank. 2015;16:181–93.

    Article  CAS  PubMed  Google Scholar 

  68. Bobis-Wozowicz S, Kmiotek K, Kania K, et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol med. 2017;95:205–20.

    Article  CAS  PubMed  Google Scholar 

  69. Wang J, Hao J, Bai D, et al. Generation of clinical-grade human induced pluripotent stem cells in xeno-free conditions. Stem Cell res Ther. 2015;6:223.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vives J, Oliver-Vila I, Pla A. Quality compliance in the shift from cell transplantation to cell therapy in non-pharma environments. Cytotherapy. 2015;17:1009–14.

    Article  PubMed  Google Scholar 

  71. Gálvez P, Clares B, Bermejo M, et al. Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells dev. 2014;23:1074–83. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA

    Article  PubMed  PubMed Central  Google Scholar 

  72. •• Codinach M, Blanco M, Ortega I, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18:1197–208. This study describes the development and testing of a standarized manufacturing process for bone marrow derrived mesenchymal stem cells.

    Article  CAS  PubMed  Google Scholar 

  73. Sladkova M, de Peppo G. Bioreactor systems for human bone tissue engineering. Pro. 2014;2:494–525.

    Google Scholar 

  74. Salter E, Goh B, Hung B, et al. Bone tissue engineering bioreactors: a role in the clinic? Tissue Eng Part B rev. 2012;18:62–75.

    Article  CAS  PubMed  Google Scholar 

  75. Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta - gen Subj. 2013;1830:2470–80.

    Article  CAS  Google Scholar 

  76. Grayson WL, Fröhlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S a. 2010;107:3299–304.

    Article  CAS  PubMed  Google Scholar 

  77. Li H, Sun S, Liu H, et al. Use of a biological reactor and platelet-rich plasma for the construction of tissue-engineered bone to repair articular cartilage defects. Exp Ther med. 2016;12:711–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ding M, Henriksen SS, Wendt D, et al. An automated perfusion bioreactor for the streamlined production of engineered osteogenic grafts. J Biomed Mater res - Part B Appl Biomater. 2016;104:532–7.

    Article  CAS  PubMed  Google Scholar 

  79. Kleinhans C, Mohan RR, Vacun G, et al. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects. Biotechnol J. 2015;10:1727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren L. Grayson.

Ethics declarations

Conflict of Interest

MKS and ALF declare that they have no conflicts of interests. WLG owns stock in EpiBone.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephenson, M.K., Farris, A.L. & Grayson, W.L. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage. Curr Rheumatol Rep 19, 44 (2017). https://doi.org/10.1007/s11926-017-0671-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-017-0671-7

Keywords

Navigation