Skip to main content

Advertisement

Log in

Is Synovial Macrophage Activation the Inflammatory Link Between Obesity and Osteoarthritis?

  • Osteoarthritis (FJ Blanco, Guest Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is the most common musculoskeletal disease, affecting nearly 25 % of the world population (WHO reports), leading to pain and disability. There are as yet no clinically proven therapies to halt OA onset or progression; the development of such therapies is, therefore, a national as well as international research priority. Obesity-related metabolic syndrome has been identified as the most significant, but also an entirely preventable risk factor for OA; however, the mechanisms underlying this link remain unclear. We have examined the available literature linking OA and metabolic syndrome. The two conditions have a shared pathogenesis in which chronic low-grade inflammation of affected tissues is recognized as a major factor that is associated with systemic inflammation. In addition, the occurrence of metabolic syndrome appears to alter systemic and local pro-inflammatory cytokines that are also related to the development of OA-like pathologies. Recent findings highlight the importance not only of the elevated number of macrophage in inflamed synovium but also the activation and amplification of the inflammatory state and other pathological changes. The role of local inflammation on the synovium is now considered to be a pharmacological target against which to aim disease-modifying drugs. In this review, we evaluate evidence linking OA, synovitis and metabolic syndrome and discuss the merits of targeting macrophage activation as a valid treatment option for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

ACC:

Articular chondrocytes

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

AGEs:

Advanced glycation end products

cDNA:

Complementary deoxyribonucleic acid

COL-2A:

Collagen type II

COL10-A:

Collagen type X

COX-2:

Cyclooxygenase-2

ECM:

Extracellular matrix

FACS:

Fluorescence-activated cell sorting

GAG:

Glycosaminoglycan

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

LTs:

Leukotrienes

LTA4 :

Leukotriene A4

LTB4:

Leukotriene B4

Ltb4r1 (BLT1):

High-affinity LTB4 receptor 1

MetS:

Metabolic syndrome

MMP:

Matrix metalloproteinase

mRNA:

Messenger ribonucleic acid

NDAIDs:

Non-steroidal anti-inflammatory drugs

NF-kB:

Nuclear factor kappa-light-chain-enhancer

NO:

Nitric oxide

OA:

Osteoarthritis

PD:

Protectin

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

RAGE:

Receptors for AGE

RvD:

D-series resolvin

RvE:

E-series resolvin

RUNX:

Runt-related transcription factor

SOX:

SRY-related HMG-box

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. AIHW. Osteoarthritis: musculoskeletal fact sheet. Arthritis SERIES 2015; 22(phe 186).

  2. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26.

    Article  PubMed  Google Scholar 

  3. Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41(5):778–99.

    Article  CAS  PubMed  Google Scholar 

  4. Stambough JB, Clohisy JC, Barrack RL, et al. Increased risk of failure following revision total knee replacement in patients aged 55 years and younger. Bone Joint J. 2014;96-B(12):1657–62.

    Article  CAS  PubMed  Google Scholar 

  5. Julin J, Jamsen E, Puolakka T, et al. Younger age increases the risk of early prosthesis failure following primary total knee replacement for osteoarthritis. A follow-up study of 32,019 total knee replacements in the Finnish Arthroplasty Register. Acta Orthop. 2010;81(4):413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harding PA, Holland AE, Hinman RS, et al. Physical activity perceptions and beliefs following total hip and knee arthroplasty: a qualitative study. Physiother Theory Pract. 2015;31(2):107–13.

    Article  PubMed  Google Scholar 

  7. Leardini G, Salaffi F, Caporali R, et al. Direct and indirect costs of osteoarthritis of the knee. Clin Exp Rheumatol. 2004;22(6):699–706.

    CAS  PubMed  Google Scholar 

  8. Nuesch E, Dieppe P, Reichenbach S, et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ. 2011;342:d1165.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.

    Article  CAS  PubMed  Google Scholar 

  11. Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med. 2009;121(6):9–20.

    Article  PubMed  Google Scholar 

  12. Zhuo Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729–37. A review of relationship between metabolic syndrome and osteoarthritis.

  13. Vlad SC, Neogi T, Aliabadi P, et al. No association between markers of inflammation and osteoarthritis of the hands and knees. J Rheumatol. 2011;38(8):1665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith MD, Chandran G, Parker A, et al. Synovial membrane cytokine profiles in reactive arthritis secondary to intravesical bacillus Calmette-Guerin therapy. J Rheumatol. 1997;24(4):752–8.

    CAS  PubMed  Google Scholar 

  15. Loeuille D, Chary-Valckenaere I, Champigneulle J, et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 2005;52(11):3492–501.

    Article  PubMed  Google Scholar 

  16. Hamada D, Maynard R, Schott E, et al. Insulin suppresses TNF-dependent early osteoarthritic changes associated with obesity and type 2 diabetes. Arthritis Rheumatol 2015. A research article indicates that the protective and anti-inflammatory role of insulin in the synovium.

  17. Messier SP, Gutekunst DJ, Davis C, et al. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum. 2005;52(7):2026–32.

    Article  PubMed  Google Scholar 

  18. Sturmer T, Gunther KP, Brenner H. Obesity, overweight and patterns of osteoarthritis: the Ulm Osteoarthritis Study. J Clin Epidemiol. 2000;53(3):307–13.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am J Epidemiol. 1988;128(1):179–89.

    CAS  PubMed  Google Scholar 

  20. Berenbaum F, Sellam J. Obesity and osteoarthritis: what are the links? Joint Bone Spine. 2008;75(6):667–8.

    Article  PubMed  Google Scholar 

  21. Murphy L, Schwartz TA, Helmick CG, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res. 2008;59(9):1207–13.

    Article  Google Scholar 

  22. Felson DT, Chaisson CE. Understanding the relationship between body weight and osteoarthritis. Baillieres Clin Rheumatol. 1997;11(4):671–81.

    Article  CAS  PubMed  Google Scholar 

  23. Jordan KM, Arden NK, Doherty M, et al. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis. 2003;62(12):1145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Millward-Sadler S, Salter DM. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng. 2004;32(3):435–46.

    Article  CAS  PubMed  Google Scholar 

  25. Chowdhury TT, Akanji OO, Salter DM, et al. Dynamic compression influences interleukin-1beta-induced nitric oxide and prostaglandin E2 release by articular chondrocytes via alterations in iNOS and COX-2 expression. Biorheology. 2008;45(3–4):257–74.

    CAS  PubMed  Google Scholar 

  26. Forsyth CB, Cole A, Murphy G, et al. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J Gerontol A Biol Sci Med Sci. 2005;60(9):1118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gabay O, Gosset M, Levy A, et al. Stress-induced signaling pathways in hyalin chondrocytes: inhibition by Avocado-Soybean Unsaponifiables (ASU). Osteoarthr Cartil. 2008;16(3):373–84.

    Article  CAS  PubMed  Google Scholar 

  28. Yusuf E, Nelissen RG, Ioan-Facsinay A, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010;69(4):761–5.

    Article  PubMed  Google Scholar 

  29. Yusuf E, Ioan-Facsinay A, Bijsterbosch J, et al. Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann Rheum Dis. 2011;70(7):1282–4.

    Article  CAS  PubMed  Google Scholar 

  30. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74.

    Article  CAS  PubMed  Google Scholar 

  31. Stienstra R, Tack CJ, Kanneganti TD, et al. The inflammasome puts obesity in the danger zone. Cell Metab. 2012;15(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metabol. 2004;89(6):2548–56.

    Article  CAS  Google Scholar 

  33. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118–29.

    Article  CAS  PubMed  Google Scholar 

  35. Pottie P, Presle N, Terlain B, et al. Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis. 2006;65(11):1403–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bastiaansen-Jenniskens YM, Clockaerts S, Feijt C, et al. Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann Rheum Dis. 2012;71(2):288–94.

    Article  CAS  PubMed  Google Scholar 

  37. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118–29.

    Article  CAS  PubMed  Google Scholar 

  38. Simopoulou T, Malizos K, Iliopoulos D, et al. Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthr Cartil. 2007;15(8):872–83.

    Article  CAS  PubMed  Google Scholar 

  39. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–9.

    Article  CAS  PubMed  Google Scholar 

  40. Poonpet T, Honsawek S. Adipokines: biomarkers for osteoarthritis? World J Orthop. 2014;5(3):319.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen T-H, Chen L, Hsieh M-S, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2006;1762(8):711–8.

    Article  CAS  Google Scholar 

  42. Ehling A, Schäffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. J Immunol. 2006;176(7):4468–78.

    Article  CAS  PubMed  Google Scholar 

  43. Alshehri AM. Metabolic syndrome and cardiovascular risk. J Fam Commun Med. 2010;17(2):73–8.

    Article  Google Scholar 

  44. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  45. Giunta B, Fernandez F, Nikolic WV, et al. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation. 2008;5(51):2094–5.

    Google Scholar 

  46. Mobasheri A, Vannucci S, Bondy C, et al. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. 2002.

  47. Rosa SC, Gonçalves J, Judas F, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res Ther. 2009;11(3):R80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bruckbauer A, Zemel MB, Thorpe T, et al. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr Metab (Lond). 2012;9(1):77.

    Article  CAS  Google Scholar 

  49. Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol. 2011;23(5):492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosa SC, Rufino AT, Judas FM, et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. J Cell Biochem. 2011;112(10):2813–24.

    Article  CAS  PubMed  Google Scholar 

  51. Stürmer T, Sun Y, Sauerland S, et al. Serum cholesterol and osteoarthritis. The baseline examination of the Ulm Osteoarthritis Study. J Rheumatol. 1998;25(9):1827–32.

    PubMed  Google Scholar 

  52. Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. J Rheumatol. 1995;22(6):1118–23.

    CAS  PubMed  Google Scholar 

  53. Oliviero F, Lo Nigro A, Bernardi D, et al. A comparative study of serum and synovial fluid lipoprotein levels in patients with various arthritides. Clin Chim Acta. 2012;413(1–2):303–7.

    Article  CAS  PubMed  Google Scholar 

  54. Faraj M, Messier L, Bastard JP, et al. Apolipoprotein B: a predictor of inflammatory status in postmenopausal overweight and obese women. Diabetologia. 2006;49(7):1637–46.

    Article  CAS  PubMed  Google Scholar 

  55. Davies-Tuck ML, Hanna F, Davis SR, et al. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women—a prospective cohort study. Arthritis Res Ther. 2009;11(6):R181. doi:10.1186/ar2873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gierman LM, Kuhnast S, Koudijs A, et al. Osteoarthritis development is induced by increased dietary cholesterol and can be inhibited by atorvastatin in APOE*3Leiden.CETP mice—a translational model for atherosclerosis. Ann Rheum Dis 2013.

  57. Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000;275(26):20069–76.

    Article  CAS  PubMed  Google Scholar 

  58. Whigham LD, Cook EB, Stahl JL, et al. CLA reduces antigen-induced histamine and PGE(2) release from sensitized guinea pig tracheae. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R908–12.

    CAS  PubMed  Google Scholar 

  59. Shen C-L, Dunn DM, Henry JH, et al. Decreased production of inflammatory mediators in human osteoarthritic chondrocytes by conjugated linoleic acids. Lipids. 2004;39(2):161–6.

    CAS  PubMed  Google Scholar 

  60. Singh G, Miller JD, Lee FH, et al. Prevalence of cardiovascular disease risk factors among US adults with self-reported osteoarthritis: data from the Third National Health and Nutrition Examination Survey. Am J Manag Care. 2002;8(15 Suppl):S383–91.

    PubMed  Google Scholar 

  61. Dahaghin S, Bierma-Zeinstra SM, Koes BW, et al. Do metabolic factors add to the effect of overweight on hand osteoarthritis? The Rotterdam Study. Ann Rheum Dis. 2007;66(7):916–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dedier J, Stampfer MJ, Hankinson SE, et al. Nonnarcotic analgesic use and the risk of hypertension in US women. Hypertension. 2002;40(5):604–8.

    Article  CAS  PubMed  Google Scholar 

  63. Curhan GC, Willett WC, Rosner B, et al. Frequency of analgesic use and risk of hypertension in younger women. Arch Intern Med. 2002;162(19):2204–8.

    Article  CAS  PubMed  Google Scholar 

  64. Verdecchia P, Angeli F, Mazzotta G, et al. Treatment strategies for osteoarthritis patients with pain and hypertension. Ther Adv Musculoskelet Dis. 2010;2(4):229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Findlay D. Vascular pathology and osteoarthritis. Rheumatology. 2007;46(12):1763–8.

    Article  CAS  PubMed  Google Scholar 

  66. Firestein GS, Budd R, O’Dell JR, et al., Kelley’s textbook of rheumatology. 2012: Saunders.

  67. Smith M, Barg E, Weedon H, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis. 2003;62(4):303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith MD. The normal synovium. Open Rheumatol J. 2011;5:100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barland P, Novikoff AB, Hamerman D. Electron microscopy of the human synovial membrane. J Cell Biol. 1962;14(2):207–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Athanasou NA. Synovial macrophages. Ann Rheum Dis. 1995;54(5):392–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Edwards J. The nature and origins of synovium: experimental approaches to the study of synoviocyte differentiation. J Anat. 1994;184(Pt 3):493.

    PubMed  PubMed Central  Google Scholar 

  72. Lau SK, Chu PG, Weiss LM. CD163 A specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol. 2004;122(5):794–801.

    Article  PubMed  Google Scholar 

  73. Athanasou N, Quinn J. Immunocytochemical analysis of human synovial lining cells: phenotypic relation to other marrow derived cells. Ann Rheum Dis. 1991;50(5):311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Athanasou NA, Quinn J, Heryet A, et al. The immunohistology of synovial lining cells in normal and inflamed synovium. J Pathol. 1988;155(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  75. Qu Z, Garcia CH, O’Rourke LM, et al. Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Arthritis Rheum. 1994;37(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  76. Wright V, Dowson D, and Kerr J. The structure of joints. In International review of connective tissue research. Academic Press Inc New York 1973; pp. 105–125.

  77. Levick JR, McDonald JN. Fluid movement across synovium in healthy joints: role of synovial fluid macromolecules. Ann Rheum Dis. 1995;54(5):417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Musumeci G, Loreto C, Carnazza ML, et al. Acute injury affects lubricin expression in knee menisci: an immunohistochemical study. Ann Anat. 2013;195(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goldenberg DL, Egan MS, Cohen AS. Inflammatory synovitis in degenerative joint disease. J Rheumatol. 1982;9(2):204–9.

    CAS  PubMed  Google Scholar 

  81. Lindblad S, Hedfors E. Arthroscopic and immunohistologic characterization of knee joint synovitis in osteoarthritis. Arthritis Rheum. 1987;30(10):1081–8.

    Article  CAS  PubMed  Google Scholar 

  82. Revell PA, Mayston V, Lalor P, et al. The synovial membrane in osteoarthritis: a histological study including the characterisation of the cellular infiltrate present in inflammatory osteoarthritis using monoclonal antibodies. Ann Rheum Dis. 1988;47(4):300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith MD, Triantafillou S, Parker A, et al. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol. 1997;24(2):365–71.

    CAS  PubMed  Google Scholar 

  84. Kawashiri SY, Suzuki T, Nakashima Y, et al. Synovial inflammation assessed by ultrasonography correlates with MRI-proven osteitis in patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53(8):1452–6.

    Article  CAS  Google Scholar 

  85. Loeser RF, Yammani RR, Carlson CS, et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum. 2005;52(8):2376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krasnokutsky S, Belitskaya-Lévy I, Bencardino J, et al. Quantitative MRI evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum. 2011;63(10):2983–91.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Amos N, Lauder S, Evans A, et al. Adenoviral gene transfer into osteoarthritis synovial cells using the endogenous inhibitor IkBα reveals that most, but not all, inflammatory and destructive mediators are NFkB dependent. Rheumatology. 2006;45(10):1201–9.

    Article  CAS  PubMed  Google Scholar 

  88. Benito MJ, Veale DJ, FitzGerald O, et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lisignoli G, Toneguzzi S, Pozzi C, et al. Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol. 1999;26(4):791–9.

    CAS  PubMed  Google Scholar 

  90. Fonseca J, Cortez-Dias N, Francisco A, et al. Inflammatory cell infiltrate and RANKL/OPG expression in rheumatoid synovium: comparison with other inflammatory arthropathies and correlation with outcome. Clin Exp Rheumatol. 2004;23(2):185–92.

    Google Scholar 

  91. Kunisch E, Fuhrmann R, Roth A, et al. Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis. 2004;63(7):774–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Blom AB, van Lent PL, Libregts S, et al. Crucial role of macrophages in matrix metalloproteinase–mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56(1):147–57. This paper describes the crucial role of synovial macrophage in early MMP activity and MMP production.

  93. Blom AB, van Lent PL, Holthuysen AE, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12(8):627–35.

    Article  PubMed  Google Scholar 

  94. Foxwell B, Browne K, Bondeson J, et al. Efficient adenoviral infection with IkappaB alpha reveals that macrophage tumor necrosis factor alpha production in rheumatoid arthritis is NF-kappaB dependent. Proc Natl Acad Sci U S A. 1998;95(14):8211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brennan FM, Chantry D, Jackson A, et al. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989;2(8657):244–7.

    Article  CAS  PubMed  Google Scholar 

  96. Bondeson J. Activated synovial macrophages as targets for osteoarthritis drug therapy. Curr Drug Targets. 2010;11(5):576–85. A review paper discusses the potential of synovial macrophages and their mediators (pro-inflammatory cytokines) as potential therapeutic targets in OA.

  97. Liu Y-C, Zou X-B, Chai Y-F, et al. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barros MH, Hauck F, Dreyer JH, et al. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE. 2013;8(11), e80908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–11.

    Article  CAS  PubMed  Google Scholar 

  101. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  CAS  PubMed  Google Scholar 

  102. Stein M, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92.

    Article  CAS  PubMed  Google Scholar 

  103. Ezekowitz RA, Stahl PD. The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl. 1988;9:121–33.

    Article  CAS  PubMed  Google Scholar 

  104. Ambarus CA, Noordenbos T, de Hair MJ, et al. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Res Ther. 2012;14(2):R74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berenbaum F. Signaling transduction: target in osteoarthritis. Curr Opin Rheumatol. 2004;16(5):616–22.

    Article  PubMed  Google Scholar 

  106. Caron JP, Fernandes JC, Martel‐Pelletier J, et al. Chondroprotective effect of intraarticular injections of interleukin‐1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase‐1 expression. Arthritis Rheum. 1996;39(9):1535–44.

    Article  CAS  PubMed  Google Scholar 

  107. Henderson B, Pettipher ER. Arthritogenic actions of recombinant IL-1 and tumour necrosis factor alpha in the rabbit: evidence for synergistic interactions between cytokines in vivo. Clin Exp Immunol. 1989;75(2):306–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. O’Byrne EM, Blancuzzi V, Wilson DE, et al. Elevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arthritis Rheum. 1990;33(7):1023–8.

    Article  PubMed  Google Scholar 

  109. Pettipher ER, Higgs GA, Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci. 1986;83(22):8749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomas DP, King B, Stephens T, et al. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann Rheum Dis. 1991;50(2):75–80.

    Article  Google Scholar 

  111. Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015;67(4):956–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Krutzik SR, Sieling PA, Modlin RL. The role of toll-like receptors in host defense against microbial infection. Curr Opin Immunol. 2001;13(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  113. Akashi S, Ogata H, Kirikae F, et al. Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochem Biophys Res Commun. 2000;268(1):172–7.

    Article  CAS  PubMed  Google Scholar 

  114. Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431–3.

    Article  CAS  PubMed  Google Scholar 

  115. Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome. Curr Opin Rheumatol. 2010;22(5):512–9.

    Article  PubMed  Google Scholar 

  116. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  117. Prieur X, Rőszer T, Ricote M. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2010;1801(3):327–37.

    Article  CAS  Google Scholar 

  118. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  119. Wang XM, Kim HP, Song R, et al. Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol. 2006;34(4):434–42.

    Article  CAS  PubMed  Google Scholar 

  120. Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11(10):936–44.

    Article  CAS  PubMed  Google Scholar 

  121. Xu H, Zhu J, Smith S, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 2012;13(7):642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kamei N, Tobe K, Suzuki R, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281(36):26602–14.

    Article  CAS  PubMed  Google Scholar 

  123. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  124. Amano SU, Cohen JL, Vangala P, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19(1):162–71.

    Article  CAS  PubMed  Google Scholar 

  125. Surmi BK, Hasty AH. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc Pharmacol. 2010;52(1):27–36.

    Article  CAS  Google Scholar 

  126. Li P, Bandyopadhyay G, Lagakos WS, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature medicine 2015.

  127. Tsao C-H, Shiau M-Y, Chuang P-H, et al. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res. 2014;55(3):385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kawanishi N, Yano H, Mizokami T, et al. Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice. Brain Behav Immun. 2012;26(6):931–41.

    Article  PubMed  Google Scholar 

  129. Bradley RL, Jeon JY, Liu F-F, et al. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol-Endocrinol Metabol. 2008;295(3):E586–94.

    Article  CAS  Google Scholar 

  130. Kawanishi N, Mizokami T, Yano H, et al. Exercise attenuates M1 macrophages and CD8+ T cells in the adipose tissue of obese mice. Med Sci Sports Exerc. 2013;45(9):1684–93.

    Article  CAS  PubMed  Google Scholar 

  131. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443–55.

    Article  CAS  PubMed  Google Scholar 

  132. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med. 2002;251(2):87–101.

    Article  CAS  PubMed  Google Scholar 

  133. Obrenovich ME, Monnier VM. Apoptotic killing of fibroblasts by matrix-bound advanced glycation endproducts. Sci Ag ing Knowl Environ. 2005;2005(4):pe3.

    Google Scholar 

  134. Jin X, Yao T, Zhou Ze, et al. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-kB pathway. BioMed research international 2015; 2015.

  135. Stannus OP, Jones G, Quinn SJ, et al. The association between leptin, interleukin-6, and hip radiographic osteoarthritis in older people: a cross-sectional study. Arthritis Res Ther. 2010;12(3):R95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kohli P, Levy BD. Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol. 2009;158(4):960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Qu Q, Xuan W, Fan GH. Roles of resolvins in the resolution of acute inflammation. Cell Biol Int. 2015;39(1):3–22.

    Article  CAS  PubMed  Google Scholar 

  138. Levy BD. Resolvins and protectins: natural pharmacophores for resolution biology. Prostaglandins, Leukot Essent Fatty Acids (PLEFA). 2010;82(4):327–32.

    Article  CAS  Google Scholar 

  139. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–5.

    Article  CAS  PubMed  Google Scholar 

  140. Abdellatif KR, Chowdhury MA, Dong Y, et al. Diazen-1-ium-1,2-diolated and nitrooxyethyl nitric oxide donor ester prodrugs of anti-inflammatory (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic acids: synthesis, cyclooxygenase inhibition, and nitric oxide release studies. Bioorg Med Chem. 2008;16(6):3302–8.

    Article  CAS  PubMed  Google Scholar 

  141. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983;220(4597):568–75.

    Article  CAS  PubMed  Google Scholar 

  142. Arita M, Ohira T, Sun Y-P, et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178(6):3912–7.

    Article  CAS  PubMed  Google Scholar 

  143. Miyahara N, Miyahara S, Takeda K, et al. Role of the LTB4/BLT1 pathway in allergen-induced airway hyperresponsiveness inflammation. Allergol Int. 2006;55(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  144. Tian W, Jiang X, Tamosiuniene R, et al. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5(200):200ra117. doi:10.1126/scitranslmed.3006674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ahmadzadeh N, Shingu M, Nobunaga M, et al. Relationship between leukotriene B4 and immunological parameters in rheumatoid synovial fluids. Inflammation. 1991;15(6):497–503.

    Article  CAS  PubMed  Google Scholar 

  146. Damon M, Chavis C, Daures J, et al. Increased generation of the arachidonic metabolites LTB4 and 5-HETE by human alveolar macrophages in patients with asthma: effect in vitro of nedocromil sodium. Eur Respir J. 1989;2(3):202–9.

    CAS  PubMed  Google Scholar 

  147. Wittenberg RH, Willburger RE, Kleemeyer KS, et al. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum. 1993;36(10):1444–50.

    Article  CAS  PubMed  Google Scholar 

  148. Xu MX, Tan BC, Zhou W, et al. Resolvin D1, an endogenous lipid mediator for inactivation of inflammation‐related signaling pathways in microglial cells, prevents lipopolysaccharide‐induced inflammatory responses. CNS Neurosci Ther. 2013;19(4):235–43.

    Article  CAS  PubMed  Google Scholar 

  149. Lima‐Garcia J, Dutra R, Da Silva K, et al. The precursor of resolvin D series and aspirin‐triggered resolvin D1 display anti‐hyperalgesic properties in adjuvant‐induced arthritis in rats. Br J Pharmacol. 2011;164(2):278–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Schif‐Zuck S, Gross N, Assi S, et al. Saturated‐efferocytosis generates pro‐resolving CD11blow macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol. 2011;41(2):366–79.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang Y, Vasheghani F, Li Y-h, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Annals of the rheumatic diseases 2014: pp. annrheumdis-2013-204599.

  152. Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278(44):43807–17.

    Article  CAS  PubMed  Google Scholar 

  153. Marcheselli VL, Mukherjee PK, Arita M, et al. Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fatty Acids. 2010;82(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Serhan CN, Gotlinger K, Hong S, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176(3):1848–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Prasadam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not describe studies in which experiments were performed on human or animal subjects.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Antonia RuJia Sun and Thor Friis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, A.R., Friis, T., Sekar, S. et al. Is Synovial Macrophage Activation the Inflammatory Link Between Obesity and Osteoarthritis?. Curr Rheumatol Rep 18, 57 (2016). https://doi.org/10.1007/s11926-016-0605-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0605-9

Keywords

Navigation