Skip to main content
Log in

Revisiting MHC Genes in Spondyloarthritis

  • Spondyloarthritis (MA Khan, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Spondyloarthritis (SpA) refers to a variety of inflammatory rheumatic disorders with strong heritability. Shared genetic predisposition, as shown by familial aggregation, is largely attributable to the major histocompatibility complex (MHC) locus, which was estimated to account for approximately half of the whole disease heritability. The first predisposing allele identified more than 40 years ago is HLA-B27, which is a major gene predisposing to all forms of SpA. However, despite intensive research, its pathogenesis remains uncertain. Other MHC alleles belonging to the class I and class II regions have been identified to exert additional effect. Candidate-gene approaches and genome-wide studies have recently allowed identification of several new loci residing outside of the MHC region that are involved in the predisposition to SpA. Interestingly, some of those new genes, such as ERAP1, ERAP2, and NPEPPS, code for aminopeptidases that are involved in MHC class I presentation and were shown to interact with HLA-B27.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Amor B, Feldmann JL, Delbarre F, Hors J, Beaujan MM, Dausset J. Letter: HL-A antigen W27–a genetic link between ankylosing spondylitis and Reiter’s syndrome? N Engl J Med. 1974;290(10):572.

    CAS  PubMed  Google Scholar 

  2. Rudwaleit M, van der Heijde D, Landewe R, Akkoc N, Brandt J, Chou CT, et al. The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2010;70(1):25–31.

    Article  PubMed  Google Scholar 

  3. Costantino F, Talpin A, Said-Nahal R, Goldberg M, Henny J, Chiocchia G, et al. Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheum Dis. 2015;74(4):689–93. Important epidemiological study combining for the first time HLA-B27 typing to SpA prevalence, using the new ASAS classification criteria.

    Article  CAS  PubMed  Google Scholar 

  4. Strand V, Rao SA, Shillington AC, Cifaldi MA, Mcguire M, Ruderman EM. Prevalence of axial spondyloarthritis in United States rheumatology practices: assessment of SpondyloArthritis International Society criteria versus rheumatology expert clinical diagnosis: ASAS criteria versus clinical diagnosis in axial SpA. Arthritis Care Res. 2013;65(8):1299–306.

    Article  Google Scholar 

  5. Breban M, Said-Nahal R, Hugot J-P, Miceli-Richard C. Familial and genetic aspects of spondyloarthropathy. Rheum Dis Clin N Am. 2003;29(3):575–94.

    Article  Google Scholar 

  6. Said-Nahal R, Miceli-Richard C, Berthelot JM, Duché A, Dernis-Labous E, Le Blévec G, et al. The familial form of spondylarthropathy: a clinical study of 115 multiplex families. Groupe Français d’Etude Génétique des Spondylarthropathies. Arthritis Rheum. 2000;43(6):1356–65.

    Article  CAS  PubMed  Google Scholar 

  7. Said-Nahal R, Miceli-Richard C, D’Agostino MA, Dernis-Labous E, Berthelot JM, Duché A, et al. Phenotypic diversity is not determined by independent genetic factors in familial spondylarthropathy. Arthritis Rheum. 2001;45(6):478–84.

    Article  CAS  PubMed  Google Scholar 

  8. Baeten D, Breban M, Lories R, Schett G, Sieper J. Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype? Arthritis Rheum. 2013;65(1):12–20. Up to date review on SpA concept: reality and controversies.

    Article  PubMed  Google Scholar 

  9. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40(10):1823–8.

    Article  CAS  PubMed  Google Scholar 

  10. Khan MA. Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep. 2013;15(10):362.

    Article  PubMed  Google Scholar 

  11. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8. The largest case-control genetic study ever performed in ankylosing spondylitis resulted in doubling the number of known associated loci.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Breban M, Miceli-Richard C, Zinovieva E, Monnet D, Said-Nahal R. The genetics of spondyloarthropathies. Joint Bone Spine Rev Rhum. 2006;73(4):355–62.

    Article  CAS  Google Scholar 

  13. Khan MA, Kushner I, Braun WE. Comparison of clinical features in HLA-B27 positive and negative patients with ankylosing spondylitis. Arthritis Rheum. 1977;20(4):909–12.

    Article  CAS  PubMed  Google Scholar 

  14. Porcher R, Said-Nahal R, D’Agostino M-A, Miceli-Richard C, Dougados M, Breban M. Two major spondylarthropathy phenotypes are distinguished by pattern analysis in multiplex families. Arthritis Rheum. 2005;53(2):263–71.

    Article  PubMed  Google Scholar 

  15. Brown MA, Laval SH, Brophy S, Calin A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2000;59(11):883–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dernis E, Said-Nahal R, D’Agostino M-A, Aegerter P, Dougados M, Breban M. Recurrence of spondylarthropathy among first-degree relatives of patients: a systematic cross-sectional study. Ann Rheum Dis. 2009;68(4):502–7.

    Article  CAS  PubMed  Google Scholar 

  17. Miceli-Richard C. Significant linkage to spondyloarthropathy on 9q31-34. Hum Mol Genet. 2004;13(15):1641–8.

    Article  CAS  PubMed  Google Scholar 

  18. Caffrey MFP, James DCO. Human lymphocyte antigen association in ankylosing spondylitis. Nature. 1973;242(5393):121.

    Article  CAS  PubMed  Google Scholar 

  19. Khan MA, Mathieu A, Sorrentino R, Akkoc N. The pathogenetic role of HLA-B27 and its subtypes. Autoimmun Rev. 2007;6(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  20. de Castro JA L. HLA-B27 and ankylosing spondylitis: tales from China. Tissue Antigens. 2010;75(1):9–11.

    Article  PubMed  Google Scholar 

  21. Chavan H, Samant R, Deshpande A, Mankeshwar R. Correlation of HLA B27 subtypes with clinical features of ankylosing spondylitis. Int J Rheum Dis. 2011;14(4):369–74.

    Article  PubMed  Google Scholar 

  22. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Greenwood BM, McMichael AJ. HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet. 1991;337(8742):640–2.

    Article  CAS  PubMed  Google Scholar 

  23. Kchir MM, Hamdi W, Laadhar L, Kochbati S, Kaffel D, Saadellaoui K, et al. HLA-B, DR and DQ antigens polymorphism in Tunisian patients with ankylosing spondylitis (a case–control study). Rheumatol Int. 2010;30(7):933–9.

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Hu L-H, Li Y-R, Chen F-H, Ning Y, Yao Q-F. The association of HLA-B*27 subtypes with ankylosing spondylitis in Wuhan population of China. Rheumatol Int. 2010;30(5):587–90.

    Article  CAS  PubMed  Google Scholar 

  25. Armas JB, Gonzalez S, Martinez-Borra J, Laranjeira F, Ribeiro E, Correia J, et al. Susceptibility to ankylosing spondylitis is independent of the Bw4 and Bw6 epitopes of HLA-B27 alleles. Tissue Antigens. 1999;53(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  26. Díaz-Peña R, López-Vázquez A, López-Larrea C. Old and new HLA associations with ankylosing spondylitis: HLA associations with ankylosing spondylitis. Tissue Antigens. 2012;80(3):205–13.

    Article  PubMed  Google Scholar 

  27. Van Gaalen FA. Does HLA-B*2706 protect against ankylosing spondylitis? A meta-analysis: metanalysis of HLA-B*2706 in ankylosing spondylitis. Int J Rheum Dis. 2012;15(1):8–12.

    Article  PubMed  Google Scholar 

  28. Paladini F, Taccari E, Fiorillo MT, Cauli A, Passiu G, Mathieu A, et al. Distribution of HLA-B27 subtypes in Sardinia and continental Italy and their association with spondylarthropathies. Arthritis Rheum. 2005;52(10):3319–21.

    Article  CAS  PubMed  Google Scholar 

  29. Siala M, Mahfoudh N, Gdoura R, Younes M, Fourati H, Kammoun A, et al. Distribution of HLA-B27 and its alleles in patients with reactive arthritis and with ankylosing spondylitis in Tunisia. Rheumatol Int. 2009;29(10):1193–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ben Radhia K, Ayed-Jendoubi S, Sfar I, Ben Romdhane T, Makhlouf M, Gorgi Y, et al. Distribution of HLA-B*27 subtypes in Tunisians and their association with ankylosing spondylitis. Joint Bone Spine Rev Rhum. 2008;75(2):172–5.

    Article  Google Scholar 

  31. Taurog JD. The mystery of HLA-B27: if it isn’t one thing, it’s another. Arthritis Rheum. 2007;56(8):2478–81.

    Article  CAS  PubMed  Google Scholar 

  32. Fiorillo MT, Cauli A, Carcassi C, Bitti PP, Vacca A, Passiu G, et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: implications for disease pathogenesis. Arthritis Rheum. 2003;48(5):1385–9.

    Article  CAS  PubMed  Google Scholar 

  33. Diyarbakir E, Eyerci N, Melikoglu M, Topcu A, Pirim I. HLA B27 subtype distribution among patients with ankylosing spondylitis in Eastern Turkey. Genet Test Mol Biomark. 2012;16(5):456–8.

    Article  CAS  Google Scholar 

  34. Park S-H, Kim J, Kim S-G, Kim S-K, Chung WT, Choe J-Y. Human leucocyte antigen-B27 subtypes in Korean patients with ankylosing spondylitis: higher B*2705 in the patient group. Int J Rheum Dis. 2009;12(1):34–8.

    Article  PubMed  Google Scholar 

  35. Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990;11(4):137–42.

    Article  CAS  PubMed  Google Scholar 

  36. Infantes S, Lorente E, Barnea E, Beer I, Barriga A, Lasala F, et al. Natural HLA-B*2705 protein ligands with glutamine as anchor motif: implications for HLA-B27 association with spondylarthropathy. J Biol Chem. 2013;288(15):10882–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schittenhelm RB, Sian TCCLK, Wilmann PG, Dudek NL, Purcell AW. Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis Rheum Hoboken NJ. 2015;67(3):702–13.

    Article  CAS  Google Scholar 

  38. Marcilla M. López de Castro JA. Peptides: the cornerstone of HLA-B27 biology and pathogenetic role in spondyloarthritis. Tissue Antigens. 2008;71(6):495–506.

    Article  CAS  PubMed  Google Scholar 

  39. Breban M, Fernández-Sueiro JL, Richardson JA, Hadavand RR, Maika SD, Hammer RE, et al. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol Baltim Md 1950. 1996;156(2):794–803.

    CAS  Google Scholar 

  40. May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, et al. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol Baltim Md 1950. 2003;170(2):1099–105.

    CAS  Google Scholar 

  41. Taurog JD, Dorris ML, Satumtira N, Tran TM, Sharma R, Dressel R, et al. Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 2009;60(7):1977–84.

    Article  CAS  PubMed  Google Scholar 

  42. Van Gaalen FA, Verduijn W, Roelen DL, Bohringer S, Huizinga TWJ, van der Heijde DM, et al. Epistasis between two HLA antigens defines a subset of individuals at a very high risk for ankylosing spondylitis. Ann Rheum Dis. 2013;72(6):974–8. Important study of the epistatic interaction between HLA-B27 and HLA-B60 (HLA-B*40:01) with regard to SpA predisposition.

  43. Robinson WP, van der Linden SM, Khan MA, Rentsch HU, Cats A, Russell A, et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 1989;32(9):1135–41.

    Article  CAS  PubMed  Google Scholar 

  44. Wei JCC, Tsai WC, Lin HS, Tsai CY, Chou CT. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheum Oxf Engl. 2004;43(7):839–42.

    Article  CAS  Google Scholar 

  45. Díaz-Peña R, Ouédraogo DD, López-Vázquez A, Sawadogo SA, López-Larrea C. Ankylosing spondylitis in three sub-Saharan populations: HLA-B*27 and HLA-B*14 contribution. Tissue Antigens. 2012;80(1):14–5.

    Article  PubMed  Google Scholar 

  46. Merino E, Galocha B, Vázquez MN. López De Castro JA. Disparate folding and stability of the ankylosing spondylitis-associated HLA-B*1403 and B*2705 proteins. Arthritis Rheum. 2008;58(12):3693–704.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez-Borra J, Gonzalez S, López-Vazquez A, Gelaz M, Armas JB, Kanga U, et al. HLA-B27 alone rather than B27-related class I haplotypes contributes to ankylosing spondylitis susceptibility. Hum Immunol. 2000;61(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou X, Wang J, Zou H, Ward MM, Weisman MH, Espitia MG, et al. MICA, a gene contributing strong susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2014;73(8):1552–7. Important genetic study showing an association between several MICA alleles and ankylosing spondylitis in two distinct populations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419(6908):734–8.

    Article  CAS  PubMed  Google Scholar 

  50. Cascino I, Paladini F, Belfiore F, Cauli A, Angelini C, Fiorillo MT, et al. Identification of previously unrecognized predisposing factors for ankylosing spondylitis from analysis of HLA–B27 extended haplotypes in Sardinia. Arthritis Rheum. 2007;56(8):2640–51.

    Article  CAS  PubMed  Google Scholar 

  51. Paladini F, Belfiore F, Cocco E, Carcassi C, Cauli A, Vacca A, et al. HLA-E gene polymorphism associates with ankylosing spondylitis in Sardinia. Arthritis Res Ther. 2009;11(6):R171.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Said-Nahal R, Miceli-Richard C, Gautreau C, Tamouza R, Borot N, Porcher R, et al. The role of HLA genes in familial spondyloarthropathy: a comprehensive study of 70 multiplex families. Ann Rheum Dis. 2002;61(3):201–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Hwang M, Zhou X, Weisman MH, Ward MM, Wang J, Gensler LS, et al. Shared HLA class I and II alleles in susceptibility to ankylosing spondylitis among three ethnic groups. Arthritis Rheum. 2014;66(10, SI):S271.

    Google Scholar 

  54. Díaz-Peña R, Aransay AM, Bruges-Armas J, López-Vázquez A, Rodríguez-Ezpeleta N, Mendibil I, et al. Fine mapping of a major histocompatibility complex in ankylosing spondylitis: association of the HLA-DPA1 and HLA-DPB1 regions. Arthritis Rheum. 2011;63(11):3305–12.

    Article  PubMed  Google Scholar 

  55. Díaz-Peña R, Castro-Santos P, Aransay AM, Brüges-Armas J, Pimentel-Santos FM, López-Larrea C. Genetic study confirms association of HLA-DPA1(∗)01:03 subtype with ankylosing spondylitis in HLA-B27-positive populations. Hum Immunol. 2013;74(6):764–7. Important confirmatory study replicating an association of HLA-DPA gene with ankylosing spondylitis in Hispanic populations.

    Article  PubMed  Google Scholar 

  56. Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, Clayton DG, Cardon LR, Craddock N, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37.

    Article  Google Scholar 

  57. Reveille JD, Sims A-M, Danoy P, Evans DM, Leo P, Pointon JJ, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42(2):123–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Evans DM, Spencer CCA, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kadi A, Izac B, Said-Nahal R, Leboime A, Van Praet L, de Vlam K, et al. Investigating the genetic association between ERAP1 and spondyloarthritis. Ann Rheum Dis. 2013;72(4):608–13.

    Article  CAS  PubMed  Google Scholar 

  60. Alvarez-Navarro C, de Castro JA L. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol. 2014;57(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  61. Costantino F, Talpin A, Evnouchidou I, Kadi A, Leboime A, Said-Nahal R, et al. ERAP1 gene expression is influenced by non-synonymous polymorphisms associated with predisposition to spondyloarthritis. Arthritis Rheum Hoboken NJ. 2015. doi:10.1002/art.39072.

    Google Scholar 

  62. Carter KW, Pluzhnikov A, Timms AE, Miceli-Richard C, Bourgain C, Wordsworth BP, et al. Combined analysis of three whole genome linkage scans for ankylosing spondylitis. Rheumatology. 2007;46(5):763–71.

    Article  CAS  PubMed  Google Scholar 

  63. Falco M, Moretta L, Moretta A, Bottino C. KIR and KIR ligand polymorphism: a new area for clinical applications? Tissue Antigens. 2013;82(6):363–73.

    Article  CAS  PubMed  Google Scholar 

  64. Díaz-Peña R, Vidal-Castiñeira JR, Mulero J, Sánchez A, Queiro R, López-Larrea C. Activating killer immunoglobulin-like receptors genes are associated with increased susceptibility to ankylosing spondylitis: KIR locus polymorphism in ankylosing spondylitis. Clin Exp Immunol. 2014. doi:10.1111/cei.12568.

  65. García-Medel N, Sanz-Bravo A, Alvarez-Navarro C, Gómez-Molina P, Barnea E, Marcilla M, et al. Peptide handling by HLA-B27 subtypes influences their biological behavior, association with ankylosing spondylitis and susceptibility to endoplasmic reticulum aminopeptidase 1 (ERAP1). Mol Cell Proteomics MCP. 2014;13(12):3367–80.

    Article  Google Scholar 

  66. Seregin SS, Rastall DPW, Evnouchidou I, Aylsworth CF, Quiroga D, Kamal RP, et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity. 2013;46(8):497–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. McHugh K, Bowness P. The link between HLA-B27 and SpA—new ideas on an old problem. Rheumatology. 2012;51(9):1529–39.

    Article  PubMed  Google Scholar 

  68. Payeli SK, Kollnberger S, Marroquin Belaunzaran O, Thiel M, McHugh K, Giles J, et al. Inhibiting HLA-B27 homodimer-driven immune cell inflammation in spondylarthritis. Arthritis Rheum. 2012;64(10):3139–49.

    Article  CAS  PubMed  Google Scholar 

  69. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  70. Neerinckx B, Carter S, Lories RJ. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73(3):629–30.

    Article  PubMed  Google Scholar 

  71. Ciccia F, Accardo-Palumbo A, Rizzo A, Guggino G, Raimondo S, Giardina A, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73(8):1566–74.

    Article  CAS  PubMed  Google Scholar 

  72. Utriainen L, Firmin D, Wright P, Cerovic V, Breban M, McInnes I, et al. Expression of HLA-B27 causes loss of migratory dendritic cells in a rat model of spondylarthritis. Arthritis Rheum. 2012;64(10):3199–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Dhaenens M, Fert I, Glatigny S, Haerinck S, Poulain C, Donnadieu E, et al. Dendritic cells from spondylarthritis-prone HLA-B27-transgenic rats display altered cytoskeletal dynamics, class II major histocompatibility complex expression, and viability. Arthritis Rheum. 2009;60(9):2622–32.

    Article  CAS  PubMed  Google Scholar 

  74. Hacquard-Bouder C, Falgarone G, Bosquet A, Smaoui F, Monnet D, Ittah M, et al. Defective costimulatory function is a striking feature of antigen-presenting cells in an HLA-B27-transgenic rat model of spondylarthropathy. Arthritis Rheum. 2004;50(5):1624–35.

    Article  CAS  PubMed  Google Scholar 

  75. Hacquard-Bouder C, Chimenti M-S, Giquel B, Donnadieu E, Fert I, Schmitt A, et al. Alteration of antigen-independent immunologic synapse formation between dendritic cells from HLA-B27-transgenic rats and CD4+ T cells: selective impairment of costimulatory molecule engagement by mature HLA-B27. Arthritis Rheum. 2007;56(5):1478–89.

    Article  PubMed  Google Scholar 

  76. Fert I, Glatigny S, Poulain C, Satumtira N, Dorris ML, Taurog JD, et al. Correlation between dendritic cell functional defect and spondylarthritis phenotypes in HLA-B27/HUMAN beta2-microglobulin-transgenic rat lines. Arthritis Rheum. 2008;58(11):3425–9.

    Article  CAS  PubMed  Google Scholar 

  77. Talpin A, Costantino F, Bonilla N, Leboime A, Letourneur F, Jacques S, et al. Monocyte-derived dendritic cells from HLA-B27+ axial spondyloarthritis (SpA) patients display altered functional capacity and deregulated gene expression. Arthritis Res Ther. 2014;16(4):417.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Fert I, Cagnard N, Glatigny S, Letourneur F, Jacques S, Smith JA, et al. Reverse interferon signature is characteristic of antigen-presenting cells in human and rat spondyloarthritis. Arthritis Rheum Hoboken NJ. 2014;66(4):841–51. Interesting study showing that both HLA-B27 transgenic rat and SpA patient antigen-presenting cells share a striking « reverse » interferon signature.

    Article  CAS  Google Scholar 

  79. Glatigny S, Fert I, Blaton MA, Lories RJ, Araujo LM, Chiocchia G, et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 2012;64(1):110–20. This study shows that expression of HLA-B27 in transgenic rat dendritic cells results in a biased activation of CD4+ T cells towards pro-inflammatory Th17 effector profile.

  80. Araujo LM, Fert I, Jouhault Q, Labroquère K, Andrieu M, Chiocchia G, et al. Increased production of interleukin-17 over interleukin-10 by Treg cells implicates inducible costimulator molecule in experimental spondyloarthritis: imbalanced production of IL-10 and IL-17 by Treg cells from HLA-B27-transgenic rats. Arthritis Rheum. 2014;66(9):2412–22.

    Article  CAS  Google Scholar 

  81. Jeanty C, Sourisce A, Noteuil A, Jah N, Wielgosik A, Fert I, et al. HLA-B27 subtype oligomerization and intracellular accumulation patterns correlate with predisposition to spondyloarthritis. Arthritis Rheum Hoboken NJ. 2014;66(8):2113–23. This study reports the intriguing observation that the intra-cellular behavior of SpA-associated HLA-B27 diverges from that of non-associated alleles by more persistent dimers and an accumulation in large saccules.

    Article  CAS  Google Scholar 

  82. Ruuska M, Sahlberg AS, Colbert RA, Granfors K, Penttinen MA. Enhanced phosphorylation of STAT-1 is dependent on double-stranded RNA-dependent protein kinase signaling in HLA-B27-expressing U937 monocytic cells. Arthritis Rheum. 2012;64(3):772–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Maxime Breban, Félicie Costantino, Claudine André, Gilles Chiocchia, and Henri-Jean Garchon declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Breban.

Additional information

This article is part of the Topical Collection on Spondyloarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breban, M., Costantino, F., André, C. et al. Revisiting MHC Genes in Spondyloarthritis. Curr Rheumatol Rep 17, 40 (2015). https://doi.org/10.1007/s11926-015-0516-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0516-1

Keywords

Navigation