Skip to main content

Advertisement

Log in

The Mechanobiology of Articular Cartilage: Bearing the Burden of Osteoarthritis

  • Osteoarthritis (MB Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Articular cartilage injuries and degenerative joint diseases are responsible for progressive pain and disability in millions of people worldwide, yet there is currently no treatment available to restore full joint functionality. As the tissue functions under mechanical load, an understanding of the physiologic or pathologic effects of biomechanical factors on cartilage physiology is of particular interest. Here, we highlight studies that have measured cartilage deformation at scales ranging from the macroscale to the microscale, as well as the responses of the resident cartilage cells, chondrocytes, to mechanical loading using in vitro and in vivo approaches. From these studies, it is clear that there exists a complex interplay among mechanical, inflammatory, and biochemical factors that can either support or inhibit cartilage matrix homeostasis under normal or pathologic conditions. Understanding these interactions is an important step toward developing tissue engineering approaches and therapeutic interventions for cartilage pathologies, such as osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mow VC, Proctor CS, Kelly MA. Biomechanics of Articular Cartilage. In: Nordin M, Frankel V, editors. Basic Biomechanics of the Muskuloskeletal system. 2nd ed. Philadelphia: Lea and Febiger; 1989.

    Google Scholar 

  2. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000;43(9):1916–26.

    Article  PubMed  CAS  Google Scholar 

  3. Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Racunica TL, Teichtahl AJ, Wang Y, et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum. 2007;57(7):1261–8.

    Article  PubMed  Google Scholar 

  5. Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006;20(1):3–25.

    Article  PubMed  Google Scholar 

  6. Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25(6):815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mow VC, Bachrach NM, Setton LA, et al. Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes. In: Mow VC et al., editors. Cell Mechanics and Cellular Engineering. New York: Springer; 1994. p. 345–79.

    Chapter  Google Scholar 

  8. Bischof JE, Spritzer CE, Caputo AM, et al. In vivo cartilage contact strains in patients with lateral ankle instability. J Biomech. 2010;43(13):2561–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coleman JL, Widmyer MR, Leddy HA, et al. Diurnal variations in articular cartilage thickness and strain in the human knee. J Biomech. 2013;46(3):541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Widmyer MR, Utturkar GM, Leddy HA, et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis Rheum. 2013;65(10):2615–22.

    PubMed  Google Scholar 

  11. Mosher TJ, Smith HE, Collins C, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    Article  PubMed  Google Scholar 

  12. Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208(4):491–512.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Eckstein F, Tieschky M, Faber S, et al. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol (Berl). 1999;200(4):419–24.

    Article  CAS  Google Scholar 

  14. Eckstein F, Tieschky M, Faber SC, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 1998;207(1):243–8.

    Article  PubMed  CAS  Google Scholar 

  15. Liu F, Kozanek M, Hosseini A, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech. 2010;43(4):658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van de Velde SK, Bingham JT, Hosseini A, et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 2009;60(12):3693–702.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bae WC, Lewis CW, Levenston ME, et al. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J Biomech. 2006;39(6):1039–47.

    Article  PubMed  Google Scholar 

  18. Chen AC, Bae WC, Schinagl RM, et al. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech. 2001;34(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Schinagl RM, Ting MK, Price JH, et al. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng. 1996;24(4):500–12.

    Article  PubMed  CAS  Google Scholar 

  20. Choi JB, Youn I, Cao L, et al. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 2007;40(12):2596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Poole CA, Ayad S, Schofield JR. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci. 1988;90(Pt 4):635–43.

    PubMed  Google Scholar 

  22. Poole CA, Flint MH, Beaumont BW. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5(4):509–22.

    Article  PubMed  CAS  Google Scholar 

  23. Haider MA, Schugart RC, Setton LA, et al. A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading. Biomech Model Mechanobiol. 2006;5(2–3):160–71.

    Article  PubMed  Google Scholar 

  24. Vincent TL, Hermansson MA, Hansen UN, et al. Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. Arthritis Rheum. 2004;50(2):526–33.

    Article  PubMed  CAS  Google Scholar 

  25. Alexopoulos LG, Youn I, Bonaldo P, et al. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum. 2009;60(3):771–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Darling EM, Wilusz RE, Bolognesi MP, et al. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J. 2010;98(12):2848–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Wilusz RE, Defrate LE, Guilak F. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. J R Soc Interface. 2012;9(76):2997–3007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kim E, Guilak F, Haider MA. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng. 2010;132(3):031011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McLeod MA, Wilusz RE, Guilak F. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J Biomech. 2013;46(3):586–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wilusz RE, Defrate LE, Guilak F. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol. 2012;31(6):320–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wilusz RE, Guilak F. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. J Mech Behav Biomed Mater. 2014;38:183–97.

  32. Wilusz RE, Zauscher S, Guilak F. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Osteoarthr Cartil. 2013;21(12):1895–903.

  33. Xu L, Golshirazian I, Asbury BJ, et al. Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol. 2014;29(5):609–18.

    PubMed  CAS  Google Scholar 

  34. Guilak F, Hung CT. Physical Regulation of Cartilage Metabolism. In: Mow VC, Huiskes R, editors. Basic Orthopaedic Biomechanics and Mechanobiology. 3rd ed. Philedalphia: Lippincott, Williams & Wilkins; 2004. p. 259–300.

    Google Scholar 

  35. Patwari P, Cheng DM, Cole AA, et al. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech Model Mechanobiol. 2007;6(1–2):83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Patwari P, Gaschen V, James IE, et al. Ultrastructural quantification of cell death after injurious compression of bovine calf articular cartilage. Osteoarthr Cartil. 2004;12(3):245–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kurz B, Lemke A, Kehn M, et al. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum. 2004;50(1):123–30.

    Article  PubMed  CAS  Google Scholar 

  38. Patwari P, Cook MN, DiMicco MA, et al. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines. Arthritis Rheum. 2003;48(5):1292–301.

    Article  PubMed  CAS  Google Scholar 

  39. Kurz B, Jin M, Patwari P, et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res. 2001;19(6):1140–6.

    Article  PubMed  CAS  Google Scholar 

  40. Loening AM, James IE, Levenston ME, et al. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys. 2000;381(2):205–12.

    Article  PubMed  CAS  Google Scholar 

  41. Quinn TM, Grodzinsky AJ, Hunziker EB, et al. Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res. 1998;16(4):490–9.

    Article  PubMed  CAS  Google Scholar 

  42. Wong M, Siegrist M, Cao X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 1999;18(4):391–9.

    Article  PubMed  CAS  Google Scholar 

  43. Buschmann MD, Kim YJ, Wong M, et al. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys. 1999;366(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  44. Mauck RL, Soltz MA, Wang CC, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000;122(3):252–60.

    Article  PubMed  CAS  Google Scholar 

  45. Ng KW, Mauck RL, Wang CC, et al. Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage. Cell Mol Bioeng. 2009;2(3):386–94.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guilak F, Meyer BC, Ratcliffe A, et al. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthr Cartil. 1994;2(2):91–101.

    Article  PubMed  CAS  Google Scholar 

  47. Stolberg-Stolberg JA, Furman BD, Garrigues NW, et al. Effects of cartilage impact with and without fracture on chondrocyte viability and the release of inflammatory markers. J Orthop Res. 2013;31(8):1283–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Natoli RM, Scott CC, Athanasiou KA. Temporal effects of impact on articular cartilage cell death, gene expression, matrix biochemistry, and biomechanics. Ann Biomed Eng. 2008;36(5):780–92.

    Article  PubMed  Google Scholar 

  49. Chan PS, Schlueter AE, Coussens PM, et al. Gene expression profile of mechanically impacted bovine articular cartilage explants. J Orthop Res. 2005;23(5):1146–51.

    Article  PubMed  CAS  Google Scholar 

  50. Ashwell MS, Gonda MG, Gray K, et al. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model. J Orthop Res. 2013;31(3):385–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech. 2000;33(12):1663–73.

    Article  PubMed  CAS  Google Scholar 

  52. Smith RL, Lin J, Trindade MC, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev. 2000;37(2):153–61.

    PubMed  CAS  Google Scholar 

  53. Smith RL, Rusk SF, Ellison BE, et al. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996;14(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  54. O'Conor CJ, Leddy HA, Benefield HC, et al. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A. 2014;111(4):1316–21. This study identifies TRPV4-mediated intracellular Ca 2+ signaling as a key mechanosensitive pathway in articular chondrocytes and demonstrates its involvement in regulating chondrocyte ECM biosynthesis.

  55. Phan MN, Leddy HA, Votta BJ, et al. Functional Characterization of TRPV4 as an Osmotically Sensitive Ion Channel in Porcine Articular Chondrocytes. Arthritis Rheum. 2009;60(10):3028–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Mobasheri A, Barrett-Jolley R Carter SD, et al. Functional Roles of Mechanosensitive Ion Channels, β1 Integrins and Kinase Cascades in Chondrocyte Mechanotransduction. In: Kamkin A, Kiseleva I, editors. Mechanosensitivity in Cells and Tissues: Moscow; 2005. http://www.ncbi.nlm.nih.gov/books/NBK7517/.

  57. Millward-Sadler SJ, Salter DM. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng. 2004;32(3):435–46.

    Article  PubMed  CAS  Google Scholar 

  58. Wann AKT, Zuo N, Haycraft CJ, et al. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J. 2012;26(4):1663–71. This work demonstrates a possible link between primary cilia in chondrocytes and ATP reception, and further establishes the role of the primary cilia in chondrocyte mechanotransduction.

  59. Dolmetsch RE, Lewis RS, Goodnow CC, et al. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386(6627):855–8.

  60. Ogawa H, Kozhemyakina E, Hung HH, et al. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev. 2014;28(2):127–39. This study identifies specific signaling pathways involved in the mechanical regulation of Prg4 expression in articular chondrocytes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Bougault C, Aubert-Foucher E, Paumier A, et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One. 2012;7(5):e36964. Chondrocytes are shown to be highly responsive to mechanical stimulation, upregulating and downregulating a diverse array of genes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Chowdhury TT, Appleby RN, Salter DM, et al. Integrin-mediated mechanotransduction in IL-1 beta stimulated chondrocytes. Biomech Model Mechanobiol. 2006;5(2–3):192–201.

    Article  PubMed  CAS  Google Scholar 

  63. Chai DH, Arner EC, Griggs DW, et al. Alphav and beta1 integrins regulate dynamic compression-induced proteoglycan synthesis in 3D gel culture by distinct complementary pathways. Osteoarthr Cartil. 2010;18(2):249–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Liang W, Ren K, Liu F, et al. Periodic mechanical stress stimulates the FAK mitogenic signal in rat chondrocytes through ERK1/2 activity. Cell Physiol Biochem. 2013;32(4):915–30.

    Article  PubMed  CAS  Google Scholar 

  65. Fitzgerald JB, Jin M, Dean D, et al. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem. 2004;279(19):19502–11.

    Article  PubMed  CAS  Google Scholar 

  66. Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil. 2004;12(6):485–96.

    Article  PubMed  Google Scholar 

  67. Thompson CL, Chapple JP, Knight MM. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthr Cartil. 2014;22(3):490–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Saito T, Nishida K, Furumatsu T, et al. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74.

    Article  PubMed  CAS  Google Scholar 

  69. Lopez MJ, Kunz D, Vanderby Jr R, et al. A comparison of joint stability between anterior cruciate intact and deficient knees: a new canine model of anterior cruciate ligament disruption. J Orthop Res. 2003;21(2):224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arunakul M, Tochigi Y, Goetz JE, et al. Replication of chronic abnormal cartilage loading by medial meniscus destabilization for modeling osteoarthritis in the rabbit knee in vivo. J Orthop Res. 2013;31(10):1555–60.

    Article  PubMed  Google Scholar 

  71. Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil. 2007;15(9):1061–9.

    Article  PubMed  CAS  Google Scholar 

  72. Kuroki K, Cook CR, Cook JL. Subchondral bone changes in three different canine models of osteoarthritis. Osteoarthr Cartil. 2011;19(9):1142–9.

    Article  PubMed  CAS  Google Scholar 

  73. Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8.

    Article  PubMed  CAS  Google Scholar 

  74. Little CB, Barai A, Burkhardt D, et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60(12):3723–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Amiable N, Martel-Pelletier J, Lussier B, et al. Proteinase-activated receptor-2 gene disruption limits the effect of osteoarthritis on cartilage in mice: a novel target in joint degradation. J Rheumatol. 2011;38(5):911–20.

    Article  PubMed  CAS  Google Scholar 

  76. Clark AL, Votta BJ, Kumar S, et al. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum. 2010;62(10):2973–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Chang CF, Ramaswamy G, Serra R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthr Cartil. 2012;20(2):152–61. This study shows that loss of the chondrocyte primary cilia, a putative mechanotransducer in cartilage, leads to osteoarthritic changes.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lotz M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res. 2001;391(Suppl(391 Suppl)):S108–15.

    Article  PubMed  Google Scholar 

  79. McNulty AL, Rothfusz NE, Leddy HA, et al. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J Orthop Res. 2013;31(7):1039–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Bougault C, Gosset M, Houard X, et al. Stress-Induced Cartilage Degradation Does Not Depend on the NLRP3 Inflammasome in Human Osteoarthritis and Mouse Models. Arthritis Rheum. 2012;64(12):3972–81.

    Article  PubMed  CAS  Google Scholar 

  81. Jovanovic D, Pelletier JP, Alaaeddine N, et al. Effect of IL-13 on cytokines, cytokine receptors and inhibitors on human osteoarthritis synovium and synovial fibroblasts. Osteoarthr Cartil. 1998;6(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  82. Ushiyama T, Chano T, Inoue K, et al. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis. 2003;62(2):108–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Deschner J, Hofman CR, Piesco NP, et al. Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care. 2003;6(3):289–93.

    PubMed  CAS  Google Scholar 

  84. Guilak F, Fermor B, Keefe FJ, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res. 2004;423:17–26.

    Article  PubMed  Google Scholar 

  85. Torzilli PA, Bhargava M, Chen CT. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression. Cartilage. 2011;2(4):364–73. This study shows that applying mechanical load in combination with IL-1 can reduce the mRNA expression of matrix-degrading enzymes that would normally be upregulated in response to IL-1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Torzilli PA, Bhargava M, Park S, et al. Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage. Osteoarthr Cartil. 2010;18(1):97–105.

  87. Chowdhury TT, Bader DL, Lee DA. Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL-1beta-stimulated chondrocytes cultured in agarose constructs. Biochem Biophys Res Commun. 2001;285(5):1168–74.

    Article  PubMed  CAS  Google Scholar 

  88. Chowdhury TT, Salter DM, Bader DL, et al. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflamm Res. 2008;57(7):306–13.

    Article  PubMed  CAS  Google Scholar 

  89. Xu Z, Buckley MJ, Evans CH, et al. Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J Immunol. 2000;165(1):453–60.

    Article  PubMed  CAS  Google Scholar 

  90. Perera PM, Wypasek E, Madhavan S, et al. Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther. 2010;12(3):R106. This study revealed a mechanism of differential kinase activation upstream of ERK1/2 phosphorylation that may regulate the effects of inflammation during mechanical loading in chondrocytes.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nam J, Aguda BD, Rath B, et al. Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One. 2009;4(4):e5262.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthr Cartil. 2002;10(10):792–8.

  93. Burleigh A, Chanalaris A, Gardiner MD, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012;64(7):2278–88. This study shows a strong link between OA progression and mechanical loading in a mouse model.

    Article  PubMed  CAS  Google Scholar 

  94. Aviezer D, Hecht D, Safran M, et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994;79(6):1005–13.

    Article  PubMed  CAS  Google Scholar 

  95. Bonassar LJ, Grodzinsky AJ, Frank EH, et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res. 2001;19(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  96. Mauck RL, Nicoll SB, Seyhan SL, et al. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 2003;9(4):597–611.

    Article  PubMed  CAS  Google Scholar 

  97. Bonassar LJ, Grodzinsky AJ, Srinivasan A, et al. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch Biochem Biophys. 2000;379(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  98. Elder BD, Athanasiou KA. Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation. PLoS One. 2008;3(6):e2341.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Allen JL, Cooke ME, Alliston T. ECM stiffness primes the TGFbeta pathway to promote chondrocyte differentiation. Mol Biol Cell. 2012;23(18):3731–42. This study shows that substrate stiffness and growth factors can have a synergistic response on chondrogenesis.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng. 2014;24:75–80.

    PubMed  Google Scholar 

  101. Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol. 2013;13(3):449–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by the Arthritis Foundation and NIH grants AR48182, AR48852, AG15768, AR50245, AG46927, and AG40868.

Compliance with Ethics Guidelines

Conflict of Interest

Johannah Sanchez-Adams reports the receipt of grants from the Arthritis Foundation.

Christopher J. O’Conor reports the receipt of grants from the NIH.

Farshid Guilak reports the receipt of grants from the Arthritis Foundation and the NIH.

Holly A. Leddy and Amy L. McNulty declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Guilak.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Adams, J., Leddy, H.A., McNulty, A.L. et al. The Mechanobiology of Articular Cartilage: Bearing the Burden of Osteoarthritis. Curr Rheumatol Rep 16, 451 (2014). https://doi.org/10.1007/s11926-014-0451-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0451-6

Keywords

Navigation