Skip to main content

Advertisement

Log in

The Th1/Th2 paradigm in the pathogenesis of scleroderma, and its modulation by thalidomide

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The immunity generated in response to an antigenic stimulus can result in at least two distinct subclasses of immune responses, commonly referred to as Th1 and Th2. This review describes Th1- and Th2-type immune responses in animal models and in human mediated disease. Evidence obtained from working within these models suggests that manipulating the Th1/Th2 balance in the immune response can alter disease processes. The possible application of this strategy in scleroderma is presented. The immune modulating effects of the drug thalidomide on Th1 and Th2 immunity are also described, along with the drug’s potential application to disease processes like scleroderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Mosmann TR, Cherwinski H, Bond MW, et al.: Two types of murine helper T cell clone: I. definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986, 136:2348–2357.

    PubMed  CAS  Google Scholar 

  2. Mosmann TR, Sad S: The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996, 17:138–146. An excellent review of Th1 and Th2 immune responses, including excellent tables listing cytokines produced by different cell types and in different disease states.

    Article  PubMed  CAS  Google Scholar 

  3. Fernandez-Botran R, Sanders VM, Mosmann TR, et al.: Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J Exp Med 1988, 168:543–558.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrick DA, Schrenzel MD, Mulvania T, et al.: Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 1995, 373:255–257.

    Article  PubMed  CAS  Google Scholar 

  5. Pearlman DS: Pathophysiology of the inflammatory response. J Allergy Clin Immunol 1999, 104:S132–137.

    Article  PubMed  CAS  Google Scholar 

  6. Mueller DL, Jenkins MK, Schwartz RH: Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989, 7:445–480.

    PubMed  CAS  Google Scholar 

  7. Freeman GJ, Boussiotis VA, Anumanthan A, et al.: B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 1995, 2:523–532.

    Article  PubMed  CAS  Google Scholar 

  8. Kuchroo VK, Das MP, Brown JA, et al.: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995, 80:707–718.

    Article  PubMed  CAS  Google Scholar 

  9. Modlin RL: Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 1994, 102:828–832. Reviews Th1 and Th2 immune responses and their application to infection with M. leprae.

    Article  PubMed  CAS  Google Scholar 

  10. Reiner SL, Locksley RM: The regulation of immunity to Leishmania major. Annu Rev Immunol 1995, 13:151–177. Leishmania major infection is an important model of Th1/Th2 immunity, and this is an excellent review of this model.

    Article  PubMed  CAS  Google Scholar 

  11. Sundar S, Rosenkaimer F, Lesser ML, et al.: Immunochem otherapy for a systemic intracellular infection: accelerated response using interferon-gamma in visceral leishmaniasis. J Infect Dis 1995, 171:992–996.

    PubMed  CAS  Google Scholar 

  12. Pearce EJ, Caspar P, Grzych JM, et al.: Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med 1991, 173:159–166.

    Article  PubMed  CAS  Google Scholar 

  13. Boros DL, Whitfield JR: Enhanced Th1 and dampened Th2 responses synergize to inhibit acute granulomatous and fibrotic responses in murine schistosomiasis mansoni. Infect Immun 1999, 67:1187–1193.

    PubMed  CAS  Google Scholar 

  14. Czaja MJ, Weiner FR, Takahashi S, et al.: Gamma-interferon treatment inhibits collagen deposition in murine schistosomiasis. Hepatology 1989, 10:795–800.

    Article  PubMed  CAS  Google Scholar 

  15. Nash TE, Cheever AW, Ottesen EA, et al.: Schistosome infections in humans: perspectives and recent findings. NIH conference. Ann Intern Med 1982, 97:740–754.

    PubMed  CAS  Google Scholar 

  16. Williams ME, Montenegro S, Domingues AL, et al.: Leukocytes of patients with Schistosoma mansoni respond with a Th2 pattern of cytokine production to mitogen or egg antigens but with a Th0 pattern to worm antigens. J Infect Dis 1994, 170:946–954.

    PubMed  CAS  Google Scholar 

  17. Wynn TA, Jankovic D, Hieny S, et al.: IL-12 enhances vaccine-induced immunity to Schistosoma mansoni in mice and decreases T helper 2 cytokine expression, IgE production, and tissue eosinophilia. J Immunol 1995, 154:4701–4709.

    PubMed  CAS  Google Scholar 

  18. Whiteside TL, Kumagai Y, Roumm AD, et al.: Suppressor cell function and T lymphocyte subpopulations in peripheral blood of patients with progressive systemic sclerosis. Arthritis Rheum 1983, 26:841–847.

    Article  PubMed  CAS  Google Scholar 

  19. Kantor TV, Whiteside TL, Friberg D, et al.: Lymphokineactivated killer cell and natural killer cell activities in patients with systemic sclerosis. Arthritis Rheum 1992, 35:694–699.

    Article  PubMed  CAS  Google Scholar 

  20. Kantor TV, Friberg D, Medsger TA, Jr, et al.: Cytokine production and serum levels in systemic sclerosis. Clin Immunol Immunopathol 1992, 65:278–285.

    Article  PubMed  CAS  Google Scholar 

  21. Needleman BW, Wigley FM, Stair RW: Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor alpha, and interferon-gamma levels in sera from patients with scleroderma. Arthritis Rheum 1992, 35:67–72.

    Article  PubMed  CAS  Google Scholar 

  22. Hasegawa M, Fujimoto M, Kikuchi K, et al.: Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol 1997, 24:328–332.

    PubMed  CAS  Google Scholar 

  23. Giacomelli R, Cipriani P, Lattanzio R, et al.: Circulating levels of soluble CD30 are increased in patients with systemic sclerosis (SSc) and correlate with serological and clinical features of the disease. Clin Exp Immunol 1997, 108:42–46.

    Article  PubMed  CAS  Google Scholar 

  24. Mavalia C, Scaletti C, Romagnani P, et al.: Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 1997, 151:1751–1758.

    PubMed  CAS  Google Scholar 

  25. Gustafsson R, Fredens K, Nettelbladt O, et al.: Eosinophil activation in systemic sclerosis. Arthritis Rheum 1991, 34:414–422.

    Article  PubMed  CAS  Google Scholar 

  26. de Paulis A, Valentini G, Spadaro G, et al.: Human basophil releasability: VIII. Increased basophil releasability in patients with scleroderma. Arthritis Rheum 1991, 34:1289–1296.

    Article  PubMed  Google Scholar 

  27. Kraling BM, Maul GG, Jimenez SA: Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. Pathobiology 1995, 63:48–56.

    Article  PubMed  CAS  Google Scholar 

  28. Roumm AD, Whiteside TL, Medsger TA Jr, et al.: Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum 1984, 27:645–653.

    Article  PubMed  CAS  Google Scholar 

  29. Seibold JR, Giorno RC, Claman HN: Dermal mast cell degranulation in systemic sclerosis. Arthritis Rheum 1990, 33:1702–1709.

    Article  PubMed  CAS  Google Scholar 

  30. Torres JE, Sanchez JL: Histopathologic differentiation between localized and systemic scleroderma. Am J Dermatopathol 1998, 20:242–245.

    Article  PubMed  CAS  Google Scholar 

  31. Herrmann K, Heckmann M, Kulozik M, et al.: Steady-state mRNA levels of collagens I, III, fibronectin, and collagenase in skin biopsies of systemic sclerosis patients. J Invest Dermatol 1991, 97:219–222.

    Article  PubMed  CAS  Google Scholar 

  32. LeRoy EC: Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 1974, 54:880–889.

    PubMed  CAS  Google Scholar 

  33. Fertin C, Nicolas JF, Gillery P, et al.: Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol 1991, 37:823–829.

    PubMed  CAS  Google Scholar 

  34. Postlethwaite AE, Holness MA, Katai H, et al.: Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 1992, 90:1479–1485.

    PubMed  CAS  Google Scholar 

  35. Jimenez SA, Freundlich B, Rosenbloom J: Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 1984, 74:1112–1116.

    PubMed  CAS  Google Scholar 

  36. Duncan MR, Berman B: Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med 1985, 162:516–527.

    Article  PubMed  CAS  Google Scholar 

  37. Kahari VM, Heino J, Vuorio T, et al.: Interferon-alpha and interferon-gamma reduce excessive collagen synthesis and procollagen mRNA levels of scleroderma fibroblasts in culture. Biochim Biophys Acta 1988, 968:45–50.

    Article  PubMed  CAS  Google Scholar 

  38. Serpier H, Gillery P, Salmon-Ehr V, et al.: Antagonistic effects of interferon-gamma and interleukin-4 on fibroblast cultures. J Invest Dermatol 1997, 109:158–162. An important study of the counter regulation of these two key cytokines on fibroblast collagen production.

    Article  PubMed  CAS  Google Scholar 

  39. Green MC, Sweet HO, Bunker LE: Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol 1976, 82:493–512.

    PubMed  CAS  Google Scholar 

  40. Kasturi KN, Shibata S, Muryoi T, et al.: Tight-skin mouse an experimental model for scleroderma. Int Rev Immunol 1994, 11:253–271.

    PubMed  CAS  Google Scholar 

  41. Ong C, Wong C, Roberts CR, et al.: Anti-IL-4 treatment prevents dermal collagen deposition in the tight-skin mouse model of scleroderma. Eur J Immunol 1998, 28:2619–2629.

    Article  PubMed  CAS  Google Scholar 

  42. Ong CJ, Ip S, Teh SJ, et al.: A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice. Cell Immunol 1999, 196:60–68.

    Article  PubMed  CAS  Google Scholar 

  43. Varga J: Recombinant cytokine treatment for scleroderma. Can the antifibrotic potential of interferon-gamma be realized clinically? Arch Dermatol 1997, 133:637–642. Provides a review of the basis for using IFN-g in SSc, as well as an assessment of its use in a series of open-label SSc clinical trials.

    Article  PubMed  CAS  Google Scholar 

  44. Hunzelmann N, Anders S, Fierlbeck G, et al.: Systemic scleroderma. Multicenter trial of 1 year of treatment with recombinant interferon gamma. Arch Dermatol 1997, 133:609–613.

    Article  PubMed  CAS  Google Scholar 

  45. Grassegger A, Schuler G, Hessenberger G, et al.: Interferongamma in the treatment of systemic sclerosis: a randomized controlled multicentre trial. Br J Dermatol 1998, 139:639–648. A study that demonstrates the importance of multicenter, placebo-controlled studies of new therapeutic agents in SSc.

    Article  PubMed  CAS  Google Scholar 

  46. Rezzonico R, Burger D, Dayer JM: Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. J Biol Chem 1998, 273:18720–18728.

    Article  PubMed  CAS  Google Scholar 

  47. Haslett PA, Corral LG, Albert M, et al.: Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 1998, 187:1885–1892.

    Article  PubMed  CAS  Google Scholar 

  48. Corral LG, Haslett PAJ, Muller GW, et al.: Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999, 163:380–386. Provides a comprehensive listing of a variety of cytokines affected by thalidomide.

    PubMed  CAS  Google Scholar 

  49. Haslett PA, Klausner JD, Makonkawkeyoon S, et al.: Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res Hum Retroviruses 1999, 15:1169–1179.

    Article  PubMed  CAS  Google Scholar 

  50. Bekker LG, Haslett P, Maartens G, et al.: Thalidomide-induced antigen-specific immune stimulation in patients with human immunodeficiency virus type 1 and tuberculosis. J Infect Dis 2000, 181:954–965.

    Article  PubMed  CAS  Google Scholar 

  51. Oliver SJ, Moreira A, Ozawa M, et al.: Beneficial effects of thalidomide in sarcoidosis are associated with an enhanced Th1-type immune response. Arthritis Rheum 1999, 42:S276.

    Google Scholar 

  52. Graham-Brown RA, Sarkany I: Scleroderma-like changes due to chronic graft-versus-host disease. Clin Exp Dermatol 1983, 8:531–538.

    Article  PubMed  CAS  Google Scholar 

  53. Lawley TJ, Peck GL, Moutsopoulos HM, et al.: Scleroderma, Sjogren-like syndrome, and chronic graft-versus-host disease. Ann Intern Med 1977, 87:707–709.

    PubMed  CAS  Google Scholar 

  54. Nelson JL: Microchimerism and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 1998, 10:564–571.

    Article  PubMed  CAS  Google Scholar 

  55. Hakim FT, Mackall CL: The immune system; effector and target of graft-versus-host disease. In In Graft-vs-Host Diseases, edn 2. Edited by Ferrara JL. New York: Marcel Deker; 1997:274–289.

    Google Scholar 

  56. Vogelsang GB, Hess AD, Gordon G, et al.: Treatment and prevention of acute graft-versus-host disease with thalidomide in a rat model. Transplantation 1986, 41:644–647.

    Article  PubMed  CAS  Google Scholar 

  57. Vogelsang GB, Hess AD, Friedman KJ, et al.: Therapy of chronic graft-v-host disease in a rat model. Blood 1989, 74:507–511.

    PubMed  CAS  Google Scholar 

  58. Vogelsang GB, Farmer ER, Hess AD, et al.: Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med 1992, 326:1055–1058.

    Article  PubMed  CAS  Google Scholar 

  59. Chao NJ, Parker PM, Niland JC, et al.: Paradoxical effect of thalidomide prophylaxis on chronic graft-vs.-host disease. Biol Blood Marrow Transplant 1996, 2:86–92.

    PubMed  CAS  Google Scholar 

  60. Oliver SJ, Moreira A, Kaplan G: Reduced fibrosis and normalization of skin structure in scleroderma patients treated with thalidomide. Arthritis Rheum 1999, 42:S187.

    Article  Google Scholar 

  61. Tramontana JM, Utaipat U, Molloy A, et al.: Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995, 1:384–397.

    PubMed  CAS  Google Scholar 

  62. Jacobson JM, Greenspan JS, Spritzler J, et al.: Thalidomide for the treatment of oral aphthous ulcers in patients with human immunodeficiency virus infection: National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med 1997, 336:1487–1493. Provides useful information on the clinical application of thalidomide.

    Article  PubMed  CAS  Google Scholar 

  63. Hamuryudan V, Mat C, Saip S, et al.: Thalidomide in the treatment of the mucocutaneous lesions of the Behcet syndrome: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998, 128:443–450. Provides information on thalidomide use.

    PubMed  CAS  Google Scholar 

  64. Hecker MS, Lebwohl MG: Recalcitrant pyoderma gangrenosum: treatment with thalidomide. J Am Acad Dermatol 1998, 38:490–491.

    Article  PubMed  CAS  Google Scholar 

  65. Sykes M, Szot GL, Nguyen PL, et al.: Interleukin-12 inhibits murine graft-versus-host disease. Blood 1995, 86:2429–2438.

    PubMed  CAS  Google Scholar 

  66. Yang YG, Dey BR, Sergio JJ, et al.: Donor-derived interferon gamma is required for inhibition of acute graft-versus-host disease by interleukin 12. J Clin Invest 1998, 102:2126–2135.

    Article  PubMed  CAS  Google Scholar 

  67. Tarrant TK, Silver PB, Wahlsten JL, et al.: Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J Exp Med 1999, 189:219–230.

    Article  PubMed  CAS  Google Scholar 

  68. King TE, Jr.: Interferon gamma-1b for the treatment of idiopathic pulmonary fibrosis [letter]. N Engl J Med 2000, 342:974–975.

    Article  PubMed  Google Scholar 

  69. Vaughan D, Drumm B: Treatment of fistulas with granulocyte colony-stimulating factor in a patient with Crohn’s disease [letter]. N Engl J Med 1999, 340:239–240.

    Article  PubMed  CAS  Google Scholar 

  70. Herranz P, Arribas JR, Navarro A, et al.: Successful treatment of aphthous ulcerations in AIDS patients using topical granulocyte-macrophage colony-stimulating factor. Br J Dermatol 2000, 142:171–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, S.J. The Th1/Th2 paradigm in the pathogenesis of scleroderma, and its modulation by thalidomide. Curr Rheumatol Rep 2, 486–491 (2000). https://doi.org/10.1007/s11926-000-0025-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-000-0025-7

Keywords

Navigation