Skip to main content
Log in

Beyond Description and Deficits: How Computational Psychiatry Can Enhance an Understanding of Decision-Making in Anorexia Nervosa

  • EATING DISORDERS (J STEINGLASS, SECTION EDITOR)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite decades of research, knowledge of the mechanisms maintaining anorexia nervosa (AN) remains incomplete and clearly effective treatments elusive. Novel theoretical frameworks are needed to advance mechanistic and treatment research for this disorder. Here, we argue the utility of engaging a novel lens that differs from existing perspectives in psychiatry. Specifically, we argue the necessity of expanding beyond two historically common perspectives: (1) the descriptive perspective: the tendency to define mechanisms on the basis of surface characteristics and (2) the deficit perspective: the tendency to search for mechanisms associated with under-functioning of decision-making abilities and related circuity, rather than problems of over-functioning, in psychiatric disorders.

Recent Findings

Computational psychiatry can provide a novel framework for understanding AN because this approach emphasizes the role of computational misalignments (rather than absolute deficits or excesses) between decision-making strategies and environmental demands as the key factors promoting psychiatric illnesses. Informed by this approach, we argue that AN can be understood as a disorder of excess goal pursuit, maintained by over-engagement, rather than disengagement, of executive functioning strategies and circuits. Emerging evidence suggests that this same computational imbalance may constitute an under-investigated phenotype presenting transdiagnostically across psychiatric disorders.

Summary

A variety of computational models can be used to further elucidate excess goal pursuit in AN. Most traditional psychiatric treatments do not target excess goal pursuit or associated neurocognitive mechanisms. Thus, targeting at the level of computational dysfunction may provide a new avenue for enhancing treatment for AN and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mitchell JE, Crow S. Medical complications of anorexia nervosa and bulimia nervosa. Curr Opin Psychiatry. 2006;19:438–43.

    Article  PubMed  Google Scholar 

  2. O’Brien KM, Vincent NK. Psychiatric comorbidity in anorexia and bulimia nervosa: nature, prevalence, and causal relationships. Clin Psychol Rev. 2003;23:57–74.

    Article  PubMed  Google Scholar 

  3. Crow SJ, Peterson CB, Swanson SA, Raymond NC, Specker S, Eckert ED, et al. Increased mortality in bulimia nervosa and other eating disorders. Am J Psychiatry. 2009;166:1342–6.

    Article  PubMed  Google Scholar 

  4. • Pennesi J-L, Wade TD. A systematic review of the existing models of disordered eating: Do they inform the development of effective interventions? Clin Psychol Rev. 2016;43:175–92. (This manuscript conducted a systematic review of existing theoretical models of eating disorders and the degree to which these progressed to mechanistically informed interventions. The findings highlight how rarely theoretical models in eating disorders have been incorporated into treatment development.)

  5. van den Berg E, Houtzager L, de Vos J, Daemen I, Katsaragaki G, Karyotaki E, et al. Meta-analysis on the efficacy of psychological treatments for anorexia nervosa. Eur Eat Disord Rev J Eat Disord Assoc. 2019;27:331–51.

    Article  Google Scholar 

  6. Hay PJ, Claudino AM, Touyz S, Abd Elbaky G. Individual psychological therapy in the outpatient treatment of adults with anorexia nervosa. Cochrane Database Syst Rev. 2015;CD003909.

  7. •• Walsh BT. The enigmatic persistence of anorexia nervosa. Am J Psychiatry. 2013;170:477–84. (This was the first article to outline the habit learning hypothesis of AN, suggesting that eating disorder behaviors develop from rewarded behaviors into over-trained habits in the development of this disorder.)

  8. Haynos AF, Wall MM, Chen C, Wang SB, Loth K, Neumark-Sztainer D. Patterns of weight control behavior persisting beyond young adulthood: results from a 15-year longitudinal study. Int J Eat Disord. 2018;51:1090–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lampard AM, Maclehose RF, Eisenberg ME, Larson NI, Davison KK, Neumark-Sztainer D. Adolescents who engage exclusively in healthy weight control behaviors: who are they? Int J Behav Nutr Phys Act. 2016;13:5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haynos AF, Field AE, Wilfley DE, Tanofsky-Kraff M. A novel classification paradigm for understanding the positive and negative outcomes associated with dieting. Int J Eat Disord. 2015;48:362–6.

    Article  PubMed  Google Scholar 

  11. Mayer LES, Schebendach J, Bodell LP, Shingleton RM, Walsh BT. Eating behavior in anorexia nervosa: before and after treatment. Int J Eat Disord. 2012;45:290–3.

    Article  PubMed  Google Scholar 

  12. Fox KR, Wang SB, Boccagno C, Haynos AF, Kleiman E, Hooley JM. Comparing self-harming intentions underlying eating disordered behaviors and NSSI: evidence that distinctions are less clear than assumed. Int J Eat Disord. 2019;52:564–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Lilienfeld SO, Treadway MT. Clashing diagnostic approaches: DSM-ICD versus RDoC. Annu Rev Clin Psychol. 2016;12:435–63. (This theoretical paper describes the limitations of historical descriptive approaches to understanding psychopathology.)

  14. Murphy R, Straebler S, Cooper Z, Fairburn CG. Cognitive behavioral therapy for eating disorders. Psychiatr Clin North Am. 2010;33:611–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Haynos AF, Lavender JM, Nelson J, Crow SJ, Peterson CB. Moving towards specificity: a systematic review of cue features associated with reward and punishment in anorexia nervosa. Clin Psychol Rev. 2020;79:101872. (This systematic review examines the reward literature parsed by stimulus/cue presentation to demonstrate that reward responsivity in AN varies considerable according to the type and context of a putative reward.)

  16. Linardon J, Wade TD, de la Piedad GX, Brennan L. The efficacy of cognitive-behavioral therapy for eating disorders: a systematic review and meta-analysis. J Consult Clin Psychol. 2017;85:1080–94.

    Article  PubMed  Google Scholar 

  17. Dawes RM, Faust D, Meehl PE. Clinical versus actuarial judgment. Science. 1989;243:1668–74.

    Article  CAS  PubMed  Google Scholar 

  18. Becker AE, Thomas JJ, Pike KM. Should non-fat-phobic anorexia nervosa be included in DSM-V? Int J Eat Disord. 2009;42:620–35.

    Article  PubMed  Google Scholar 

  19. Askew AJ, Peterson CB, Crow SJ, Mitchell JE, Halmi KA, Agras WS, et al. Not all body image constructs are created equal: Predicting eating disorder outcomes from preoccupation, dissatisfaction, and overvaluation. Int J Eat Disord. 2020;53:954–63.

    Article  PubMed  Google Scholar 

  20. Linardon J, Hindle A, Brennan L. Dropout from cognitive-behavioral therapy for eating disorders: a meta-analysis of randomized, controlled trials. Int J Eat Disord. 2018;51:381–91.

    Article  PubMed  Google Scholar 

  21. Linardon J. Rates of abstinence following psychological or behavioral treatments for binge-eating disorder: Meta-analysis. Int J Eat Disord. 2018;51:785–97.

    Article  PubMed  Google Scholar 

  22. Eddy KT, Dorer DJ, Franko DL, Tahilani K, Thompson-Brenner H, Herzog DB. Diagnostic crossover in anorexia nervosa and bulimia nervosa: implications for DSM-V. Am J Psychiatry. 2008;165:245–50.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crow SJ. Pharmacologic treatment of eating disorders. Psychiatr Clin North Am. 2019;42:253–62.

    Article  PubMed  Google Scholar 

  24. • Redish AD, Jensen S, Johnson A. A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci. 2008;31:415–37; discussion 437–487. (This paper provides a framework for how computational psychiatry can be used to enhance classification and targeting of addictive disorders.)

  25. Song S, Zilverstand A, Gui W, Pan X, Zhou X. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects. Addict Abingdon Engl. 2021;

  26. Snider SE, LaConte SM, Bickel WK. Episodic future thinking: expansion of the temporal window in individuals with alcohol dependence. Alcohol Clin Exp Res. 2016;40:1558–66.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stein JS, Tegge AN, Turner JK, Bickel WK. Episodic future thinking reduces delay discounting and cigarette demand: an investigation of the good-subject effect. J Behav Med. 2018;41:269–76.

    Article  PubMed  Google Scholar 

  28. Ostergren JE, Hammer RR, Dingel MJ, Koenig BA, McCormick JB. Challenges in translational research: the views of addiction scientists. PLoS One. 2014;9:e93482. https://doi.org/10.1371/journal.pone.0093482.

  29. Ansell EB, Sanislow CA, McGlashan TH, Grilo CM. Psychosocial impairment and treatment utilization by patients with borderline personality disorder, other personality disorders, mood and anxiety disorders, and a healthy comparison group. Compr Psychiatry. 2007;48:329–36.

    Article  PubMed  Google Scholar 

  30. Mehta S, Mittal PK, Swami MK. Psychosocial functioning in depressive patients: a comparative study between major depressive disorder and bipolar affective disorder. Depress Res Treat. Hindawi; 2014;2014:e302741.

  31. Ruggero CJ, Chelminski I, Young D, Zimmerman M. Psychosocial impairment associated with bipolar II disorder. J Affect Disord. 2007;104:53–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington HL, Caspi A. A gradient of childhood self-control predicts health, wealth, and public safety. PNAS. 2011;108:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Lempert KM, Steinglass JE, Pinto A, Kable JW, Simpson HB. Can delay discounting deliver on the promise of RDoC? Psychol Med. 2018;1–10. (This review highlights the literature demonstrating extremes in self-control, as measured by delay discounting, within psychiatric disorders and discusses implications for conceptualization of these disorders.)

  34. Lipszyc J, Schachar R. Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc JINS. 2010;16:1064–76.

    Article  PubMed  Google Scholar 

  35. Treadway MT, Bossaller NA, Shelton RC, Zald DH. Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol. 2012;121:553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron. 2018;98:886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174:676–85.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McTeague LM, Goodkind MS, Etkin A. Transdiagnostic impairment of cognitive control in mental illness. J Psychiatr Res. 2016;83:37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rodman AM, Jenness JL, Weissman DG, Pine DS, McLaughlin KA. Neurobiological markers of resilience to depression following childhood maltreatment: the role of neural circuits supporting the cognitive control of emotion. Biol Psychiatry. 2019;86:464–73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lavagnino L, Arnone D, Cao B, Soares JC, Selvaraj S. Inhibitory control in obesity and binge eating disorder: a systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci Biobehav Rev. 2016;68:714–26.

    Article  PubMed  Google Scholar 

  41. Wu M, Hartmann M, Skunde M, Herzog W, Friederich H-C. Inhibitory control in bulimic-type eating disorders: a systematic review and meta-analysis. PloS One. 2013;8:e83412.

  42. Janiri D, Moser DA, Doucet GE, Luber MJ, Rasgon A, Lee WH, et al. Shared neural phenotypes for mood and anxiety disorders: a meta-analysis of 226 task-related functional imaging studies. JAMA Psychiat. 2020;77:172–9.

    Article  Google Scholar 

  43. Nowrangi MA, Lyketsos C, Rao V, Munro CA. Systematic review of neuroimaging correlates of executive functioning: converging evidence from different clinical populations. J Neuropsychiatry Clin Neurosci. 2014;26:114–25.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Steward T, Menchón JM, Jiménez-Murcia S, Soriano-Mas C, Fernández-Aranda F. Neural network alterations across eating disorders: a narrative review of fmri studies. Curr Neuropharmacol. 2018;16:1150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Atiye M, Miettunen J, Raevuori-Helkamaa A. A meta-analysis of temperament in eating disorders. Eur Eat Disord Rev J Eat Disord Assoc. 2015;23:89–99.

    Article  Google Scholar 

  46. Dalsgaard S, McGrath J, Østergaard SD, Wray NR, Pedersen CB, Mortensen PB, et al. Association of mental disorder in childhood and adolescence with subsequent educational achievement. JAMA Psychiat. 2020;77:797–805.

    Article  Google Scholar 

  47. Duncan L, Yilmaz Z, Gaspar H, Walters R, Goldstein J, Anttila V, et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am J Psychiatry. 2017;174:850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sundquist J, Ohlsson H, Winkleby MA, Sundquist K, Crump C. School achievement and risk of eating disorders in a swedish national cohort. J Am Acad Child Adolesc Psychiatry. 2016;55:41-46.e1.

    Article  PubMed  Google Scholar 

  49. Toro J, Nicolau R, Cervera M, Castro J, Blecua MJ, Zaragoza M, et al. A clinical and phenomenological study of 185 Spanish adolescents with anorexia nervosa. Eur Child Adolesc Psychiatry. 1995;4:165–74.

    Article  CAS  PubMed  Google Scholar 

  50. Sundgot-Borgen J, Torstveit MK. Aspects of disordered eating continuum in elite high-intensity sports. Scand J Med Sci Sports. 2010;20(Suppl 2):112–21.

    Article  PubMed  Google Scholar 

  51. Thompson RA, Sherman RT. “Good athlete” traits and characteristics of anorexia nervosa: are they similar? Eat Disord Routledge. 1999;7:181–90.

    Article  Google Scholar 

  52. Odum AL. Delay discounting: I’m a k, you’re a k. J Exp Anal Behav. 2011;96:427–39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. King JA, Bernardoni F, Geisler D, Ritschel F, Doose A, Pauligk S, Pásztor K, Weidner K, Roessner V, Smolka MN, Ehrlich S. Intact value-based decision-making during intertemporal choice in women with remitted anorexia nervosa? An fMRI study J Psychiatry Neurosci. 2020;45:108–16.

    Article  PubMed  Google Scholar 

  54. Ritschel F, King JA, Geisler D, Flohr L, Neidel F, Boehm I, Seidel M, Zwipp J, Ripke S, Smolka MN, Roessner V, Ehrlich S. Temporal delay discounting in acutely ill and weight-recovered patients with anorexia nervosa. Psychol Med. 2015;45:1229–39.

    Article  CAS  PubMed  Google Scholar 

  55. Amlung M, Marsden E, Holshausen K, Morris V, Patel H, Vedelago L, et al. Delay discounting as a transdiagnostic process in psychiatric disorders: a meta-analysis. JAMA Psychiat. 2019;76:1176–86.

    Article  Google Scholar 

  56. Decker JH, Figner B, Steinglass JE. On Weight and waiting: delay discounting in anorexia nervosa pretreatment and posttreatment. Biol Psychiatry. 2015;78:606–14.

    Article  PubMed  Google Scholar 

  57. Steinglass JE, Lempert KM, Choo T-H, Kimeldorf MB, Wall M, Walsh BT, et al. Temporal discounting across three psychiatric disorders: anorexia nervosa, obsessive compulsive disorder, and social anxiety disorder. Depress Anxiety. 2017;34:463–70.

    Article  PubMed  Google Scholar 

  58. Bartholdy S, Rennalls S, Danby H, Jacques C, Campbell IC, Schmidt U, et al. Temporal discounting and the tendency to delay gratification across the eating disorder spectrum. Eur Eat Disord Rev J Eat Disord Assoc. 2017;25:344–50.

    Article  Google Scholar 

  59. Steward T, Mestre-Bach G, Vintró-Alcaraz C, Agüera Z, Jiménez-Murcia S, Granero R, et al. Delay discounting of reward and impulsivity in eating disorders: from anorexia nervosa to binge eating disorder. Eur Eat Disord Rev J Eat Disord Assoc. 2017;25:601–6.

    Article  Google Scholar 

  60. •• Inzlicht M, Shenhav A, Olivola CY. The effort paradox: effort is both costly and valued. Trends Cogn Sci. 2018;22:337–49. (This paper reviews the research demonstrating that effort can be both modeled as a cost and a reward, and posit different models that incorporate these two perspectives on reward.)

  61. McCarthy JM, Treadway MT, Bennett ME, Blanchard JJ. Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophr Res. 2016;170:278–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Treadway MT, Peterman JS, Zald DH, Park S. Impaired effort allocation in patients with schizophrenia. Schizophr Res. 2015;161:382–5.

    Article  PubMed  Google Scholar 

  63. Patzelt EH, Kool W, Millner AJ, Gershman SJ. The transdiagnostic structure of mental effort avoidance. Sci Rep. 2019;9:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gianini LM, Klein DA, Call C, Mayer L, Foltin RW, Walsh BT, et al. The reinforcing effect of exercise in anorexia nervosa: clinical correlates and relationship to outcome. Eat Disord. 2016;24:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Haynos AF, Hill B, Fruzzetti AE. Emotion regulation training to reduce problematic dietary restriction: an experimental analysis. Appetite. 2016;103:265–74.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klein DA, Schebendach JE, Gershkovich M, Bodell LP, Foltinb RW, Walsh BT. Behavioral assessment of the reinforcing effect of exercise in women with anorexia nervosa: further paradigm development and data. Int J Eat Disord. 2010;43:611–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schebendach J, Klein DA, Mayer LES, Attia E, Devlin MJ, Foltin RW, et al. Assessment of the motivation to use artificial sweetener among individuals with an eating disorder. Appetite. 2017;109:131–6.

    Article  PubMed  Google Scholar 

  68. Schebendach JE, Klein DA, Foltin RW, Devlin MJ, Walsh BT. Relative reinforcing value of exercise in inpatients with anorexia nervosa: model development and pilot data. Int J Eat Disord. 2007;40:446–53.

    Article  PubMed  Google Scholar 

  69. O’Hara CB, Keyes A, Renwick B, Leyton M, Campbell IC, Schmidt U. The effects of acute dopamine precursor depletion on the reinforcing value of exercise in anorexia nervosa. PloS One. 2016;11:e0145894.

  70. King JA, Korb FM, Vettermann R, Ritschel F, Egner T, Ehrlich S. Cognitive overcontrol as a trait marker in anorexia nervosa? Aberrant task- and response-set switching in remitted patients. J Abnorm Psychol. 2019;128:806–12.

    Article  PubMed  Google Scholar 

  71. Lloyd S, Yiend J, Schmidt U, Tchanturia K. Perfectionism in anorexia nervosa: novel performance based evidence. PloS One. 2014;9:e111697.

  72. Pieters G, Hulstijn W, Vandereycken W, Maas Y, Probst M, Peuskens J, et al. Fast psychomotor functioning in anorexia nervosa: effect of weight restoration. J Clin Exp Neuropsychol. 2005;27:931–42.

    Article  PubMed  Google Scholar 

  73. Pieters G, Hulstijn W, Maas Y, Vandereycken W, Peuskens J, Probst M, et al. Psychomotor performance and sequence planning in anorexia nervosa before and after weight restoration. Eat Weight Disord EWD. 2006;11:154–62.

    Article  CAS  PubMed  Google Scholar 

  74. Ehrlich S, Geisler D, Ritschel F, King JA, Seidel M, Boehm I, et al. Elevated cognitive control over reward processing in recovered female patients with anorexia nervosa. J Psychiatry Neurosci JPN. 2015;40:307–15.

    Article  PubMed  Google Scholar 

  75. Boehm I, King JA, Bernardoni F, Geisler D, Seidel M, Ritschel F, et al. Subliminal and supraliminal processing of reward-related stimuli in anorexia nervosa. Psychol Med. 2018;48:790–800.

    Article  CAS  PubMed  Google Scholar 

  76. Seidel M, King JA, Ritschel F, Boehm I, Geisler D, Bernardoni F, et al. Processing and regulation of negative emotions in anorexia nervosa: an fMRI study. NeuroImage Clin. 2018;18:1–8.

    Article  PubMed  Google Scholar 

  77. Stedal K, Broomfield C, Hay P, Touyz S, Scherer R. Neuropsychological functioning in adult anorexia nervosa: a meta-analysis. Neurosci Biobehav Rev. 2021;130:214–26.

    Article  PubMed  Google Scholar 

  78. Zakzanis KK, Campbell Z, Polsinelli A. Quantitative evidence for distinct cognitive impairment in anorexia nervosa and bulimia nervosa. J Neuropsychol. 2010;4:89–106.

    Article  PubMed  Google Scholar 

  79. Giannunzio V, Degortes D, Tenconi E, Collantoni E, Solmi M, Santonastaso P, et al. Decision-making impairment in anorexia nervosa: new insights into the role of age and decision-making style. Eur Eat Disord Rev J Eat Disord Assoc. 2018;26:302–14.

    Article  Google Scholar 

  80. Wu M, Brockmeyer T, Hartmann M, Skunde M, Herzog W, Friederich H-C. Reward-related decision making in eating and weight disorders: a systematic review and meta-analysis of the evidence from neuropsychological studies. Neurosci Biobehav Rev. 2016;61:177–96.

    Article  PubMed  Google Scholar 

  81. Piccolo M, Milos GF, Bluemel S, Schumacher S, Mueller-Pfeiffer C, Fried M, et al. behavioral responses to uncertainty in weight-restored anorexia nervosa — preliminary results. Front Psychol. 2019;10:2492.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Keegan E, Tchanturia K, Wade TD. Central coherence and set-shifting between nonunderweight eating disorders and anorexia nervosa: a systematic review and meta-analysis. Int J Eat Disord. 2021;54:229–43.

    Article  PubMed  Google Scholar 

  83. •• Redish AD, Gordon JA, editors. Computational psychiatry: new perspectives on mental illness. Cambridge, MA, USA: MIT Press; 2016. (This book outlines the theoretical underpinnings and postulates of computational psychiatry and provides examples of how this approach can be applied transdiagnostically to better characterize and understand psychiatric concerns.)

  84. Friston KJ, Redish AD, Gordon JA. Computational nosology and precision psychiatry. Comput Psychiatry Camb Mass. 2017;1:2–23.

    Article  Google Scholar 

  85. Redish AD. Beyond the cognitive map: from place cells to episodic memory. Cambridge, MA, USA: A Bradford Book; 1999.

  86. Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci. 2018;22:128–35.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brown VM, Zhu L, Solway A, Wang JM, McCurry KL, King-Casas B, et al. Reinforcement learning disruptions in individuals with depression and sensitivity to symptom change following cognitive behavioral therapy. JAMA Psychiatry. 2021;

  88. Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev. 2015;55:247–67.

    Article  PubMed  Google Scholar 

  89. Smith R, Kuplicki R, Feinstein J, Forthman KL, Stewart JL, Paulus MP, et al. A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Comput Biol. 2020;16:e1008484.

  90. Berwian IM, Wenzel JG, Collins AGE, Seifritz E, Stephan KE, Walter H, et al. Computational mechanisms of effort and reward decisions in patients with depression and their association with relapse after antidepressant discontinuation. JAMA Psychiat. 2020;77:513–22.

    Article  Google Scholar 

  91. Boettcher H, Brake CA, Barlow DH. Origins and outlook of interoceptive exposure. J Behav Ther Exp Psychiatry. 2016;53:41–51.

    Article  PubMed  Google Scholar 

  92. • Voon V, Reiter A, Sebold M, Groman S. Model-based control in dimensional psychiatry. Biol Psychiatry. 2017;82:391–400. (This review outlines the differences between model-based and model-free learning and decision-making, as well as the literature suggesting that these distinctions may be useful for understanding the maintenance of psychopathology.)

  93. Gläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife. 2016;5:e11305.

  95. Foerde K, Daw ND, Rufin T, Walsh BT, Shohamy D, Steinglass JE. Deficient goal-directed control in a population characterized by extreme goal pursuit. J Cogn Neurosci. 2021;33:463–81.

    Article  PubMed  Google Scholar 

  96. Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: A common bias towards learning habits. Mol Psychiatry. 2015;20:345–52.

    Article  CAS  PubMed  Google Scholar 

  97. Hasz BM, Redish AD. Deliberation and procedural automation on a two-step task for rats. Front Integr Neurosci. 2018;12:30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. • Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69:1204–15. (This study distinguishes between model-based and model-free influences on human decision-making, demonstrating that people dysnamically switch between use of these different strategies.)

  99. Daw ND, Dayan P. The algorithmic anatomy of model-based evaluation. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130478.

    Article  PubMed  PubMed Central  Google Scholar 

  100. •• Redish AD. Vicarious trial and error. Nat Rev Neurosci. 2016;17:147–59. (This paper describes the discovery of deliberation among non-human animals, and how this decision process translates to explain human cognition and behavior.)

  101. •• Steinglass JE, Walsh BT. Neurobiological model of the persistence of anorexia nervosa. J Eat Disord. 2016;4:19. (This manuscript reviews the state of the neurobiological evidence for the habit theory of AN.)

  102. Foerde K, Steinglass JE, Shohamy D, Walsh BT. Neural mechanisms supporting maladaptive food choices in anorexia nervosa. Nat Neurosci. 2015;18:1571–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Foerde K, Walsh BT, Dalack M, Daw N, Shohamy D, Steinglass JE. Changes in brain and behavior during food-based decision-making following treatment of anorexia nervosa. J Eat Disord. 2021;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Foerde K, Schebendach JE, Davis L, Daw N, Walsh BT, Shohamy D, et al. Restrictive eating across a spectrum from healthy to unhealthy: behavioral and neural mechanisms. Psychol Med. 2020;1–10.

  105. Godier LR, de Wit S, Pinto A, Steinglass JE, Greene AL, Scaife J, et al. An investigation of habit learning in anorexia nervosa. Psychiatry Res. 2016;244:214–22.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Steding J, Boehm I, King JA, Geisler D, Ritschel F, Seidel M, et al. Goal-directed vs. habitual instrumental behavior during reward processing in anorexia nervosa: an fMRI study. Sci Rep. 2019;9:13529.

  107. Davis L, Walsh BT, Schebendach J, Glasofer DR, Steinglass JE. Habits are stronger with longer duration of illness and greater severity in anorexia nervosa. Int J Eat Disord. 2020;53:413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Constantino S, Daw ND. Learning the opportunity cost of time in a patch-foraging task. Cogn Affect Behav Neurosci. 2015;15:837–53.

    Article  PubMed  PubMed Central  Google Scholar 

  109. • Abram SV, Breton Y-A, Schmidt B, Redish AD, MacDonald AW. The Web-Surf Task: a translational model of human decision-making. Cogn Affect Behav Neurosci. 2016;16:37–50. (This study demonstrates that non-human animal foraging paradigms can be adapted for human samples, who demonstrate similar patterns of decision-making under foraging conditions.)

  110. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, et al. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40:99–124.

    Article  CAS  PubMed  Google Scholar 

  111. Bickel WK, Johnson MW, Koffarnus MN, MacKillop J, Murphy JG. The behavioral economics of substance use disorders: reinforcement pathologies and their repair. Annu Rev Clin Psychol. 2014;10:641–77.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Brassard SL, Balodis IM. A review of effort-based decision-making in eating and weight disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110333.

  113. Eisenberger R. Learned industriousness. Psychol Rev. 1992;99:248–67.

    Article  CAS  PubMed  Google Scholar 

  114. Damiano CR, Aloi J, Treadway M, Bodfish JW, Dichter GS. Adults with autism spectrum disorders exhibit decreased sensitivity to reward parameters when making effort-based decisions. J Neurodev Disord. 2012;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757.

  116. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. 5th ed. Washington, D.C: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  117. Lei H, Huang L, Li J, Liu W, Fan J, Zhang X, et al. Altered spontaneous brain activity in obsessive-compulsive personality disorder. Compr Psychiatry. 2020;96:152144.

  118. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J Physiol Paris. 2015;109:3–15.

    Article  PubMed  Google Scholar 

  119. Andreassen CS, Griffiths MD, Hetland J, Kravina L, Jensen F, Pallesen S. The prevalence of workaholism: a survey study in a nationally representative sample of norwegian employees. PloS One. Public Library of Science; 2014;9:e102446.

  120. Freimuth M, Moniz S, Kim SR. Clarifying exercise addiction: differential diagnosis, co-occurring disorders, and phases of addiction. Int J Environ Res Public Health. 2011;8:4069–81.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Egorov AY, Szabo A. The exercise paradox: an interactional model for a clearer conceptualization of exercise addiction. J Behav Addict. 2013;2:199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Peterson C. suicide rates by industry and occupation — national violent death reporting system, 32 states, 2016. MMWR Morb Mortal Wkly Rep [Internet]. 2020;69. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6903a1.htm

  123. Pinto A. Treatment of obsessive-compulsive personality disorder. 2016. p. 415–29.

  124. Yang Z, Oathes DJ, Linn KA, Bruce SE, Satterthwaite TD, Cook PA, et al. Cognitive behavioral therapy is associated with enhanced cognitive control network activity in major depression and posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:311–9.

    PubMed  Google Scholar 

  125. Hauer L, Sellner J, Brigo F, Trinka E, Sebastianelli L, Saltuari L, et al. Effects of repetitive transcranial magnetic stimulation over prefrontal cortex on attention in psychiatric disorders: a systematic review. J Clin Med. 2019;8:E416.

    Article  PubMed  Google Scholar 

  126. • Treasure J, Crane A, McKnight R, Buchanan E, Wolfe M. First do no harm: iatrogenic maintaining factors in anorexia nervosa. Eur Eat Disord Rev J Eat Disord Assoc. 2011;19:296–302. (This manuscript hypothesizes ways in which common therapeutic practices could be harmful to individuals with AN if managed insensitively, highlighting the need to carefully consider treatment targets in this population.)

  127. Halmi KA. Salient components of a comprehensive service for eating disorders. World Psychiatry. 2009;8:150–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Neuroplasticity in Support of Mental Health (NeuroPRSMH) interdisciplinary workgroup who provided feedback on and refinement of the theoretical areas outlined in this manuscript and Jesse W. Dzmobak who assisted with our figure.

Funding

This work was supported in part by the National Institutes of Health (K23MH112867, K23MH123910; T32MH096679; P50MH119569; UH3NS100548, R01MH119384, R21MH120785), the Hilda and Preston Davis Foundation, the MnDRIVE Brain Conditions Initiative, and the Medical Discovery Team—Addictions at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript conception and design. The first draft of the manuscript was written by A. F. Haynos, and all authors provided feedback on subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ann F. Haynos.

Ethics declarations

Competing Interests

A.S. Widge reports consulting income from Circuit Therapeutics and Dandelion Science and multiple unlicensed patents in the area of neurostimulation. Other authors have no relevant financial or non-financial interests to disclose.

Disclaimer

These funding agencies did not influence the design or writing of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haynos, A.F., Widge, A.S., Anderson, L.M. et al. Beyond Description and Deficits: How Computational Psychiatry Can Enhance an Understanding of Decision-Making in Anorexia Nervosa. Curr Psychiatry Rep 24, 77–87 (2022). https://doi.org/10.1007/s11920-022-01320-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-022-01320-9

Keywords

Navigation