Skip to main content
Log in

Dopamine hypothesis of schizophrenia: Making sense of it all

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The dopamine (DA) hypothesis of schizophrenia has evolved over the last decade from the stage of circumstantial evidence related to clinical observations and empirical validation from antipsychotic treatment to finally reach more direct testing and validation from imaging studies. These have provided much information that allows us at this point to assemble all the pieces and attempt to synthesize them and integrate them with the other neurotransmitter alterations observed in this illness. Although clearly not sufficient to explain the complexity of this disorder, the DA dysregulation offers a direct relationship to symptoms and to their treatment. We will review here its history, validation, and implications for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rossum V: The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 1966, 160:492–494.

    PubMed  Google Scholar 

  2. Carlsson A, Lindqvist M: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963, 20:140–144.

    Article  CAS  Google Scholar 

  3. Seeman P, Chau-Wong M, Tedesco J, Wong K: Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci U S A 1975, 72:4376–4380.

    Article  PubMed  CAS  Google Scholar 

  4. Creese I, Burt DR, Snyder SH: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976, 19:481–483.

    Article  Google Scholar 

  5. Lieberman JA, Kane JM, Alvir J: Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 1987, 91:415–433.

    Article  PubMed  CAS  Google Scholar 

  6. Angrist B, van Kammen DP: CNS stimulants as a tool in the study of schizophrenia. Trends Neurosci 1984, 7:388–390.

    Article  Google Scholar 

  7. Knable MB, Weinberger DR: Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997, 11:123–131.

    Article  PubMed  CAS  Google Scholar 

  8. Goldman-Rakic PS, Muly EC 3rd, Williams GV: D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000, 31:295–301.

    Article  PubMed  CAS  Google Scholar 

  9. Davis KL, Kahn RS, Ko G, Davidson M: Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991, 148:1474–1486.

    PubMed  CAS  Google Scholar 

  10. Weinberger DR: Implications of the normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987, 44:660–669.

    PubMed  CAS  Google Scholar 

  11. Pycock CJ, Kerwin RW, Carter CJ: Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 1980, 286:74–77.

    Article  PubMed  CAS  Google Scholar 

  12. Young D, Scoville WB: Paranoid psychosis in narcolepsy and the possible dangers of benzedrine treatment. Med Clin North Am 1938, 22:637.

    Google Scholar 

  13. Connell PH: Amphetamine Psychosis. London: Chapman and Hill; 1958.

    Google Scholar 

  14. Griffith JJ, Oates J, Cavanaugh J: Paranoid episodes induced by drugs. J Am Med Assoc 1968, 205:39.

    Google Scholar 

  15. Angrist BM, Gershon S: The phenomenology of experimentally induced amphetamine psychosis-preliminary observation. Biol Psychiatry 1970, 2:95–107.

    PubMed  CAS  Google Scholar 

  16. Bell DS: The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry 1973, 29:35–40.

    PubMed  CAS  Google Scholar 

  17. Ellinwood EH, Jr.: Amphetamine psychosis: I. Description of the individuals and process. J Nerv Ment Dis 1967, 144:273–283.

    Article  Google Scholar 

  18. Ellinwood EH, Sudilovsky A, Nelson LM: Evolving behavior in the clinical and experimental amphetamine model psychosis. Am J Psychiatry 1973, 130:1088–1093.

    PubMed  Google Scholar 

  19. Lieberman JA, Kane JM, Sarantakos S, et al.: Prediction of relapse in schizophrenia. Arch Gen Psychiatry 1987, 44:597–603.

    PubMed  CAS  Google Scholar 

  20. Delay J, Deniker P, Harl J: Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP) [in French]. Ann Med Psychol (Paris) 1952, 110:112–117.

    CAS  Google Scholar 

  21. Talbot PS, Laruelle M: The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 2002, 12:503–511.

    Article  PubMed  CAS  Google Scholar 

  22. Kapur S, Zipursky R, Jones C, et al.: Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000, 157:514–520.

    Article  PubMed  CAS  Google Scholar 

  23. Nordstrom AL, Farde L, Wiesel FA, et al.: Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993, 33:227–235.

    Article  PubMed  CAS  Google Scholar 

  24. Farde L, Nordstrom AL, Wiesel FA, et al.: Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992, 49:538–544.

    PubMed  CAS  Google Scholar 

  25. Weinberger D, Laruelle M: Neurochemical and neuropharmacological imaging in schizophrenia. In Neuropsychopharmacology—The Fifth Generation of Progress. Edited by Davis KL, Charney DS, Coyle J, et al. Philadelphia: Lippincott Williams & Wilkins; 2001:833–855.

    Google Scholar 

  26. Seeman P, Guan HC, Niznik HB: Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse 1989, 3:96–97.

    Article  PubMed  CAS  Google Scholar 

  27. Seeman P: Brain dopamine receptors in schizophrenia: PET problems. Arch Gen Psychiatry 1988, 45:598–600.

    PubMed  CAS  Google Scholar 

  28. Hirvonen J, van Erp TG, Huttunen J, et al.: Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia. Arch Gen Psychiatry 2005, 62:371–378.

    Article  PubMed  CAS  Google Scholar 

  29. Okubo Y, Suhara T, Suzuki K, et al.: Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997, 385:634–636.

    Article  PubMed  CAS  Google Scholar 

  30. Abi-Dargham A, Mawlawi O, Lombardo I, et al.: Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 2002, 22:3708–3719.

    PubMed  CAS  Google Scholar 

  31. Karlsson P, Farde L, Halldin C, Sedvall G: PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 2002, 159:761–767.

    Article  PubMed  Google Scholar 

  32. Laruelle M, Iyer RN, al-Tikriti MS, et al.: Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 1997, 25:1–14.

    Article  PubMed  CAS  Google Scholar 

  33. Villemagne VL, Wong DF, Yokoi F, et al.: GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans. Synapse 1999, 33:268–273.

    Article  PubMed  CAS  Google Scholar 

  34. Breier A, Su TP, Saunders R, et al.: Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 1997, 94:2569–2574.

    Article  PubMed  CAS  Google Scholar 

  35. Laruelle M, Abi-Dargham A, van Dyck CH, et al.: Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 1996, 93:9235–9240.

    Article  PubMed  CAS  Google Scholar 

  36. Abi-Dargham A, Gil R, Krystal J, et al.: Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998, 155:761–767.

    PubMed  CAS  Google Scholar 

  37. Laruelle M, Abi-Dargham A, Gil R, et al.: Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 1999, 46:56–72.

    Article  PubMed  CAS  Google Scholar 

  38. Parsey RV, Oquendo MA, Zea-Ponce Y, et al.: Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 2001, 50:313–322.

    Article  PubMed  CAS  Google Scholar 

  39. Laruelle M, Abi-Dargham A, van Dyck C, et al.: Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT. Biol Psychiatry 2000, 47:371–379.

    Article  PubMed  CAS  Google Scholar 

  40. Laakso A, Vilkman H, Alakare B, et al.: Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 2000, 157:269–271.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor SF, Koeppe RA, Tandon R, et al.: In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacology 2000, 23:667–675.

    Article  PubMed  CAS  Google Scholar 

  42. Laruelle M: Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000, 20:423–451.

    Article  PubMed  CAS  Google Scholar 

  43. Laruelle M, D’souza CD, Baldwin RM, et al.: Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997, 17:162–174.

    Article  PubMed  CAS  Google Scholar 

  44. Abi-Dargham A, Rodenhiser J, Printz D, et al.: Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 2000, 97:8104–8109.

    Article  PubMed  CAS  Google Scholar 

  45. Kegeles L, Frankle W, Gil R, et al.: Schizophrenia is associated with increased synaptic dopamine in associative rather than limbic regions of the striatum: implications for mechanisms of action of antipsychotic drugs. J Nucl Med 2006, 47:139P.

    Google Scholar 

  46. Alexander GE, Delong MR, Stick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986, 9:357–381.

    Article  PubMed  CAS  Google Scholar 

  47. Hoover JE, Strick PL: Multiple output channels in the basal ganglia. Science 1993, 259:819–821.

    Article  PubMed  CAS  Google Scholar 

  48. Ferry AT, Ongur D, An X, Price JL: Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000, 425:447–470.

    Article  PubMed  CAS  Google Scholar 

  49. Joel D, Weiner I: The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000, 96:451–474.

    Article  PubMed  CAS  Google Scholar 

  50. Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995, 20:91–127.

    Article  PubMed  CAS  Google Scholar 

  51. Dao-Castellana MH, Paillere-Martinot ML, Hantraye P, et al.: Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 1997, 23:167–174.

    Article  PubMed  CAS  Google Scholar 

  52. Elkashef AM, Doudet D, Bryant T, et al.: 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res 2000, 100:1–11.

    Article  PubMed  CAS  Google Scholar 

  53. Hietala J, Syvalahti E, Vilkman H, et al.: Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 1999, 35:41–50.

    Article  PubMed  CAS  Google Scholar 

  54. Hietala J, Syvalahti E, Vuorio K, et al.: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 1995, 346:1130–1131.

    Article  PubMed  CAS  Google Scholar 

  55. Lindstrom LH, Gefvert O, Hagberg G, et al.: Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 1999, 46:681–688.

    Article  PubMed  CAS  Google Scholar 

  56. McGowan S, Lawrence AD, Sales T, et al.: Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry 2004, 61:134–142.

    Article  PubMed  Google Scholar 

  57. Meyer-Lindenberg A, Miletich RS, Kohn PD, et al.: Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002, 5:267–271.

    Article  PubMed  CAS  Google Scholar 

  58. Reith J, Benkelfat C, Sherwin A, et al.: Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A 1994, 91:11651–11654.

    Article  PubMed  CAS  Google Scholar 

  59. Zhu M Y, Juorio AV, Paterson IA, Boulton AA: Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors. Eur J Pharmacol 1993, 238:157–164.

    Article  PubMed  CAS  Google Scholar 

  60. Cho S, Neff NH, Hadjiconstantinou M: Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur J Pharmacol 1997, 323:149–157.

    Article  PubMed  CAS  Google Scholar 

  61. Danielsen EH, Smith D, Hermansen F, et al.: Acute neuroleptic stimulates DOPA decarboxylase in porcine brain in vivo. Synapse 2001, 41:172–175.

    Article  PubMed  CAS  Google Scholar 

  62. Torstenson R, Hartvig P, Langstrom B, et al.: Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology 1998, 37:989–995.

    Article  PubMed  CAS  Google Scholar 

  63. Grunder G, Vernaleken I, Muller MJ, et al.: Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 2003, 28:787–794.

    Article  PubMed  CAS  Google Scholar 

  64. Grace AA: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991, 41:1–24.

    Article  PubMed  CAS  Google Scholar 

  65. Goldman-Rakic P: Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 1994, 6:348.

    PubMed  CAS  Google Scholar 

  66. Goldberg TE, Weinberger DR: Genes and the parsing of cognitive processes. Trends Cogn Sci 2004, 8:325–335.

    Article  PubMed  Google Scholar 

  67. Weinberger DR, Berman KF, Chase TN: Mesocortical dopaminergic function and human cognition. Ann N Y Acad Sci 1988, 537:330–338.

    Article  PubMed  CAS  Google Scholar 

  68. Kahn RS, Harvey PD, Davidson M, et al.: Neuropsychological correlates of central monoamine function in chronic schizophrenia: relationship between CSF metabolites and cognitive function. Schizophr Res 1994, 11:217–224.

    Article  PubMed  CAS  Google Scholar 

  69. Daniel DG, Weinberger DR, Jones DW, et al.: The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 1991, 11:1907–1917.

    PubMed  CAS  Google Scholar 

  70. Dolan RJ, Fletcher P, Frith CD, et al.: Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 1995, 378:180–182.

    Article  PubMed  CAS  Google Scholar 

  71. Guo N, Hwang D, Abdellhadis S, et al.: The effect of chronic DA depletion on D1 ligand binding in rodent brain. Soc Neurosc Abst 2001, 27:238.

    Google Scholar 

  72. Dumartin B, Jaber M, Gonon F, et al.: Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci U S A 2000, 97:1879–1884.

    Article  PubMed  CAS  Google Scholar 

  73. Scott L, Kruse MS, Forssberg H, et al.: Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci U S A 2002, 99:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  74. Hirvonen J, van Erp TG, Huttunen J, et al.: Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 2006, 163:1747–1753.

    Article  PubMed  Google Scholar 

  75. Lidow MS, Elsworth JD, Goldman-Rakic PS: Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. J Pharmacol Exp Ther 1997, 281:597–603.

    PubMed  CAS  Google Scholar 

  76. Ekelund J, Slifstein M, Narendran R, et al.: In vivo DA D1 receptor selectivity of NNC 112 and SCH23390. Mol Imaging Biol 2007, 9:117–125.

    Article  PubMed  Google Scholar 

  77. Tuppurainen H, Kuikka J, Viinamaki H, et al.: Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol Psychiatry 2003, 8:453–455.

    Article  PubMed  CAS  Google Scholar 

  78. Talvik M, Nordstrom A L, Okubo Y, et al.: Dopamine D(2) receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 2006, 148:165–173.

    Article  PubMed  CAS  Google Scholar 

  79. Talvik M, Nordstrom A L, Olsson H, et al.: Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. Int J Neuropsychopharmacol 2003, 6:361–370.

    Article  PubMed  CAS  Google Scholar 

  80. Suhara T, Okubo Y, Yasuno F, et al.: Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 2002, 59:25–30.

    Article  PubMed  CAS  Google Scholar 

  81. Glenthoj BY, Mackeprang T, Svarer C, et al.: Frontal dopamine D(2/3) receptor binding in drug-naive first-episo de schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 2006, 60:621–629.

    Article  PubMed  CAS  Google Scholar 

  82. Agid O, Mamo D, Ginovart N, et al.: Striatal vs extrastriatal dopamine D(2) receptors in antipsychotic response-a double-blind PET study in schizophrenia. Neuropsychopharmacology 2007, 32:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  83. Gurevich EV, Bordelon Y, Shapiro RM, et al.: Mesolimbic dopamine D-3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry 1997, 54:225–232.

    PubMed  CAS  Google Scholar 

  84. Murray AM, Hyde TM, Knable MB, et al.: Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia. J Neurosci 1995, 15:2186–2191.

    PubMed  CAS  Google Scholar 

  85. Sumiyoshi T, Stockmeier CA, Overholser JC, et al.: Dopamine D4 receptors and effects of guanine nucleotides on [3H]raclopride binding in postmortem caudate nucleus of subjects with schizophrenia or major depression. Brain Res 1995, 681:109–116.

    Article  PubMed  CAS  Google Scholar 

  86. Marzella PL, Copolov D: [H-3]nemonapride binding in human caudate and putamen. Brain Res Bull 1997, 44:167–170.

    Article  PubMed  CAS  Google Scholar 

  87. Lahti RA, Roberts RC, Conley RR, et al.: Dopamine D2, D3 and D4 receptors in human postmortem brain sections: comparison between normals and schizophrenics. Schizophr Res 1996, 18:173.

    Google Scholar 

  88. Reynolds GP, Mason SL: Are striatal dopamine D-4 receptors increased in schizophrenia? J Neurochem 1994, 63:1576–1577.

    Article  PubMed  CAS  Google Scholar 

  89. Lahti RA, Roberts RC, Cochrane EV, et al.: Direct determination of dopamine D-4 receptors in normal and schizophrenic postmortem brain tissue: a [H-3]NGD-94-1 study. Mol Psychiatry 1998, 3:528–533.

    Article  PubMed  CAS  Google Scholar 

  90. Kramer MS, Last B, Getson A, Reines SA: The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997, 54:567–572.

    PubMed  CAS  Google Scholar 

  91. Narendran R, Frankle WG, Keefe R, et al.: Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 2005, 162:2352–2359.

    Article  PubMed  Google Scholar 

  92. Abi-Dargham A, Moore H: Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003, 9:404–416.

    Article  PubMed  CAS  Google Scholar 

  93. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, et al.: Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 2000, 48:627–640.

    Article  PubMed  CAS  Google Scholar 

  94. Laruelle M, Kegeles LS, Abi-Dargham A: Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 2003, 1003:138–158.

    Article  PubMed  CAS  Google Scholar 

  95. Lewis DA, Gonzalez-Burgos G: Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006, 12:1016–1022.

    Article  PubMed  CAS  Google Scholar 

  96. Hsiao MC, Lin KJ, Liu C Y, et al.: Dopamine transporter change in drug-naive schizophrenia: an imaging study with 99mTc-TRODAT-1. Schizophr Res 2003, 65:39–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anissa Abi-Dargham MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, M., Abi-Dargham, A. Dopamine hypothesis of schizophrenia: Making sense of it all. Curr Psychiatry Rep 9, 329–336 (2007). https://doi.org/10.1007/s11920-007-0041-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-007-0041-7

Keywords

Navigation