Skip to main content

Advertisement

Log in

Recent advances in the pharmacotherapy of cocaine dependence

Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The pharmacotherapy of cocaine dependence is a rapidly developing field of research that may soon produce efficacious medications. Expanding research on reward-related brain circuitry, which is acutely activated and chronically dysregulated by cocaine, has helped reveal the neurobiological features of cocaine dependence and is guiding pharmacologic strategies that have significant potential to improve clinical outcome. Cocaine dependence is a multifaceted disorder with distinct clinical components that may respond to different pharmacologic approaches. Pharmacologic strategies for this disorder include blocking euphoria, reducing withdrawal and negative mood symptoms, ameliorating craving, and enhancing the prefrontal cortical function that seems to be impaired in cocaine-dependent patients. One medication may not be sufficient to treat these diverse elements of cocaine dependence because preliminary studies report efficacy with medications that have opposite actions on reward-related circuits. This review highlights pertinent advances in cocaine neurobiology, recent clinical trials, and controversies in the pharmacologic treatment of cocaine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Kampman KM, Alterman AI, Volpicelli JR, et al.: Cocaine withdrawal symptoms and initial urine toxicology results predict treatment attrition in outpatient cocaine dependence treatment. Psychol Addict Behav 2001, 15:52–59.

    Article  PubMed  CAS  Google Scholar 

  2. Dackis CA, Gold MS: New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 1985, 9:469–477.

    Article  PubMed  CAS  Google Scholar 

  3. Dackis CA, O’Brien CP: Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat 2001, 21:111–117.

    Article  PubMed  CAS  Google Scholar 

  4. Garlow SJ, Purselle D, D’Orio B: Cocaine use disorders and suicidal ideation. Drug Alcohol Depend 2003, 70:101–104.

    Article  PubMed  Google Scholar 

  5. Sofuoglu M, Dudish-Poulsen S, Brown S, et al.: Association of cocaine withdrawal symptoms with more severe dependence and enhanced subjective response to cocaine. Drug Alcohol Depend 2003, 69:273–282.

    Article  PubMed  CAS  Google Scholar 

  6. Newton TF, Kalechstein AD, Tervo KE, et al.: Irritability following abstinence from cocaine predicts euphoric effects of cocaine administration. Addict Behav 2003, 28:817–821.

    Article  PubMed  Google Scholar 

  7. Sofuoglu M, Brown S, Babb DA, et al.: Depressive symptoms modulate the subjective and physiological response to cocaine in humans. Drug Alcohol Depend 2001, 63:131–137.

    Article  PubMed  CAS  Google Scholar 

  8. Dackis CA, O’Brien CP: The neurobiology of addiction. In Diseases of the Nervous System. Edited by Asbury A. Cambridge: Cambridge University Press; 2001:431–444. This is a review of the biological basis of addiction, orgazized according to classes of addictive drugs. Pharmacologic treatments for these conditions also are discussed.

    Google Scholar 

  9. Volkow ND, Fowler JS, Wang GJ: Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 1999, 13:337–345. This study was the first to show the biological basis of cocaine reward in human subjects. Of particular importance is the fact that euphoria intensity is determined by the rate by which cocaine enters the brain and binds dopamine transporters.

    Article  PubMed  CAS  Google Scholar 

  10. Rocha BA: Stimulant and reinforcing effects of cocaine in monoamine transporter knockout mice. Eur J Pharmacol 2003, 479:107–115.

    Article  PubMed  CAS  Google Scholar 

  11. Kampman KM, Pettinati H, Lynch KG, et al.: A pilot trial of olanzapine for the treatment of cocaine dependence. Drug Alcohol Depend 2003, 70:265–273.

    Article  PubMed  CAS  Google Scholar 

  12. Haney M, Ward AS, Foltin RW, et al.: Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine selfadministration by humans. Psychopharmacology (Berl) 2001, 155:330–337.

    Article  CAS  Google Scholar 

  13. Dackis CA, O’Brien CP: Cocaine dependence: the challenge for pharmacotherapy. Curr Opinion Psychiatry 2002, 15:261–268.

    Article  Google Scholar 

  14. Dackis C, O’Brien C: Glutamatergic agents for cocaine dependence. Ann NY Acad Sci 2003, 1003:328–345. This paper reviews the role of glutamate circuits in cocaine reward and the effect of chronic cocaine administration on glutamatergic systems. Possible roles for medications affecting glutamate in GABA in the treatment of cocaine dependence also are discussed.

    Article  PubMed  CAS  Google Scholar 

  15. Chiamulera C, Epping-Jordan MP, Zocchi A, et al.: Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001, 4:873–874.

    Article  PubMed  CAS  Google Scholar 

  16. Chuhma N, Zhang H, Masson J, et al.: Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci 2004, 24:972–981.

    Article  PubMed  CAS  Google Scholar 

  17. Collins ED, Vosburg SK, Hart CL, et al.: Amantadine does not modulate reinforcing, subjective, or cardiovascular effects of cocaine in humans. Pharmacol Biochem Behav 2003, 76:401–407.

    Article  PubMed  CAS  Google Scholar 

  18. Collins ED, Ward AS, McDowell DM, et al.: The effects of memantine on the subjective, reinforcing and cardiovascular effects of cocaine in humans. Behav Pharmacol 1998, 9:587–598.

    Article  PubMed  CAS  Google Scholar 

  19. Dackis CA, Lynch KG, Yu E, et al.: Modafinil and cocaine: a double-blind, placebo-controlled drug interaction study. Drug Alcohol Depend 2003, 70:29–37.

    Article  PubMed  CAS  Google Scholar 

  20. MalcolmR, DonovanJL, DeVaneCL, et al.: Influence of modafinil, 400 or 800 mg/day on subjective effects of intravenous cocaine in non-treatment seeking volunteers. In College on Problems of Drug Dependence. Quebec City, 2002.

  21. Baker DA, McFarland K, Lake RW, et al.: N-acetyl cysteineinduced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci, 2003, 1003:349–351.

    Article  PubMed  Google Scholar 

  22. Kalivas PW, McFarland K, Bowers S, et al.: Glutamate transmission and addiction to cocaine. Ann N Y Acad Sci 2003, 1003:169–175.

    Article  PubMed  CAS  Google Scholar 

  23. Ferraro L, Antonelli T, O’Connor WT, et al.: The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 1998, 253:135–138.

    Article  PubMed  CAS  Google Scholar 

  24. Fadda P, Scherma M, Fresu A, et al.: Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse 2003, 50:1–6.

    Article  PubMed  CAS  Google Scholar 

  25. Brebner K, Childress AR, Roberts DC: A potential role for GABA(B) agonists in the treatment of psychostimulant addiction. Alcohol Alcohol 2002, 37:478–484. This is a comprehensive review of animal models that supports the use of GABAB agonists in the treatment of cocaine dependence. Preliminary human data also is included, and the clinical rationale for using baclofen is reviewed.

    PubMed  CAS  Google Scholar 

  26. Lile JA, Stoops WW, Allen TS, et al.: Baclofen does not alter the reinforcing, subject-rated or cardiovascular effects of intranasal cocaine in humans. Psychopharmacology (Berl) 2004, 171:441–449.

    Article  CAS  Google Scholar 

  27. Haga JL, Baker RW, Rush CR: Behavioral and physiological effects of cocaine in humans following triazolam. Pharmacol Biochem Behav 2003, 76:383–392.

    Article  PubMed  CAS  Google Scholar 

  28. Hart CL, Ward AS, Collins ED, et al.: Gabapentin maintenance decreases smoked cocaine-related subjective effects, but not self-administration by humans. Drug Alcohol Depend 2004, 73:279–287.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Schlussman SD, Ho A, et al.: Effect of chronic "binge cocaine" on basal levels and cocaine-induced increases of dopamine in the caudate putamen and nucleus accumbens of C57BL/6J and 129/J mice. Synapse 2003, 50:191–199.

    Article  PubMed  CAS  Google Scholar 

  30. Houtsmuller EJ, Notes LD, Newton T, et al.: Transdermal selegiline and intravenous cocaine: safety and interactions. Psychopharmacology (Berl) 2004, 172:31–40.

    Article  CAS  Google Scholar 

  31. Mateo Y, Budygin EA, John CE, et al.: Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci U S A 2004, 101:372–377.

    Article  PubMed  CAS  Google Scholar 

  32. Smith JE, Co C, Yin X, et al.: Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neurosci Biobehav Rev 2004, 27:841–850.

    Article  PubMed  CAS  Google Scholar 

  33. Bowen CA, Negus SS, Zong R, et al.: Effects of mixed-action kappa/mu opioids on cocaine self-administration and cocaine discrimination by rhesus monkeys. Neuropsychopharmacology 2003, 28:1125–1139.

    PubMed  CAS  Google Scholar 

  34. Sofuoglu M, Singha A, Kosten TR, et al.: Effects of naltrexone and isradipine, alone or in combination, on cocaine responses in humans. Pharmacol Biochem Behav 2003, 75:801–808.

    Article  PubMed  CAS  Google Scholar 

  35. Walsh SL, Sullivan JT, Preston KL, et al.: Effects of naltrexone on response to intravenous cocaine, hydromorphone and their combination in humans. J Pharmacol Exp Ther 1996, 279:524–538.

    PubMed  CAS  Google Scholar 

  36. Montoya ID, Gorelick DA, Preston KL, et al.: Randomized trial of buprenorphine for treatment of concurrent opiate and cocaine dependence. Clin Pharmacol Ther 2004, 75:34–48.

    Article  PubMed  CAS  Google Scholar 

  37. Foltin RW, Ward AS, Collins ED, et al.: The effects of venlafaxine on the subjective, reinforcing, and cardiovascular effects of cocaine in opioid-dependent and non-opioid-dependent humans. Exp Clin Psychopharmacol 2003, 11:123–130.

    Article  PubMed  CAS  Google Scholar 

  38. Ahmed SH, Kenny PJ, Koob GF, et al.: Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 2002, 5:625–626.

    PubMed  CAS  Google Scholar 

  39. Kalivas PW, McFarland K: Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 2003, 168:44–56. This is a comprehensive review of reinstatement resulting from cues, cocaine, and stress. Relevant brain mechanisms are discussed with an emphasis on reward-related circuitry and neurotransmitter involvement.

    Article  CAS  Google Scholar 

  40. Schultz W: Reward signaling by dopamine neurons. Neuroscientist 2001, 7:293–302.

    PubMed  CAS  Google Scholar 

  41. Carelli RM, Wondolowski J: Selective encoding of cocaine versus natural rewards by nucleus accumbens neurons is not related to chronic drug exposure. J Neurosci 2003, 23:11214–11223. Landmark experiments done by this group on neuronal firing within the NAc, in response to cocaine administration, are presented in the context of natural reward circuitry.

    PubMed  CAS  Google Scholar 

  42. Koeltzow TE, White FJ: Behavioral depression during cocaine withdrawal is associated with decreased spontaneous activity of ventral tegmental are dopamine neurons. Behav Neurosci 2003, 117:860–865.

    Article  PubMed  CAS  Google Scholar 

  43. Thomas MJ, Beurrier C, Bonci A, et al.: Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 2001, 4:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  44. Xi ZX, Ramamoorthy S, Shen H, et al.: GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J Neurosci 2003, 23:3498–3505. This study provides direct evidence of increased GABA tone during withdrawal from chronic cocaine treatment, providing a rationale for treating cocaine dependence with medications that reduce GABA neurotransmission.

    PubMed  CAS  Google Scholar 

  45. Baker DA, McFarland K, Lake RW, et al.: Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003, 6:743–749. This series of studies links cocaine-induced glutamate depletion in the NAc to cocaine reinstatement, an animal model of relapse. These studies provide compelling rationale to prescribe glutamate-enhancing agents in cocaine dependence.

    Article  PubMed  CAS  Google Scholar 

  46. Ferraro L, Tanganelli S, O’Connor WT, et al.: The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. Eur J Pharmacol 1996, 306:33–39.

    Article  PubMed  CAS  Google Scholar 

  47. DackisC, KampmanK, LynchK, et al.: Modafinil improves cocaine abstinence in cocaine dependence: a double-blind, placebo-controlled trial. In New Clinical Drug Evaluation Unit (NCDEU). Phoenix, AR, 2004.

  48. Beusterien KM, Rogers AE, Walsleben JA, et al.: Health-related quality of life effects of modafinil for treatment of narcolepsy. Sleep 1999, 22:757–765.

    PubMed  CAS  Google Scholar 

  49. Kaufman JN, Ross TJ, Stein EA, et al.: Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by eventrelated functional magnetic resonance imaging. J Neurosci 2003, 23:7839–7843.

    PubMed  CAS  Google Scholar 

  50. Matochik JA, London ED, Eldreth DA, et al.: Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 2003, 19:1095–1102.

    Article  PubMed  Google Scholar 

  51. Franklin TR, Acton PD, Maldjian JD, et al.: Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 2002, 51:134–142.

    Article  PubMed  CAS  Google Scholar 

  52. Lidow MS, Song ZM: Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 2001, 435:263–275.

    Article  PubMed  CAS  Google Scholar 

  53. Trantham H, Szumlinski KK, McFarland K, et al.: Repeated cocaine administration alters the electrophysiological properties of prefrontal cortical neurons. Neuroscience 2002, 113:749–753.

    Article  PubMed  CAS  Google Scholar 

  54. Robinson TE, Gorny G, Mitton E, et al.: Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 2001, 39:257–266.

    Article  PubMed  CAS  Google Scholar 

  55. Walton ME, Bannermman KA, Alterescue K, et al.: Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 2003, 23:6475–6479.

    PubMed  CAS  Google Scholar 

  56. Arana FS, Parkinson JA, Hinton E, et al.: Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J Neurosci 2003, 23:9632–9638.

    PubMed  CAS  Google Scholar 

  57. Rolls ET: The orbitofrontal cortex and reward. Cereb Cortex 2000, 10:284–294.

    Article  PubMed  CAS  Google Scholar 

  58. Grimm JW, Lu L, Hayashi T, et al.: Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003, 23:742–747.

    PubMed  CAS  Google Scholar 

  59. Scammell TE, Estabrooke IV, McCarthy MT, et al.: Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 2000, 20:8620–8628.

    PubMed  CAS  Google Scholar 

  60. Turner DC, Robbins TW, Clark L, et al.: Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 2003, 165:260–269.

    CAS  Google Scholar 

  61. Garavan H, Pankiewicz J, Bloom A, et al.: Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000, 157:1789–1798. This study shows that limbic activation in response to cocaine-related cues affects the same brain substrates that are activated by sexually explicit movies. The finding supports the notion that cocaine addiction affects natural reward circuitry.

    Article  PubMed  CAS  Google Scholar 

  62. Ghitza UE, Fabbricatore AR, Prokopenko V, et al.: Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine. J Neurosci 2003, 23:7239–7245.

    PubMed  CAS  Google Scholar 

  63. Hayes RJ, Vorel SR, Spector J, et al.: Electrical and chemical stimulation of the basolateral complex of the amygdala reinstates cocaine-seeking behavior in the rat. Psychopharmacology (Berl) 2003, 168:75–83.

    Article  CAS  Google Scholar 

  64. Carelli RM, Williams JG, Hollander JA: Basolateral amygdala neurons encode cocaine self-administration and cocaineassociated cues. J Neurosci 2003, 23:8204–8211.

    PubMed  CAS  Google Scholar 

  65. Di Ciano P, Everitt BJ: Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001, 25:341–360.

    Article  PubMed  Google Scholar 

  66. Hotsenpiller G, Wolf ME: Baclofen attenuates conditioned locomotion to cues associated with cocaine administration and stabilizes extracellular glutamate levels in rat nucleus accumbens. Neuroscience 2003, 118:123–134.

    Article  PubMed  CAS  Google Scholar 

  67. Kampman K, Pettinati H, Lynch K, et al.: A pilot trial of topiramate for the treatment of cocaine dependence. Drug Alcohol Depend 2004, 70:265–27. This study reports efficacy with topiramate, a GABA agonist, in the treatment of cocaine dependence. Efficacy was found in the latter part of the trial, suggesting a relapse prevention effect.

    Article  CAS  Google Scholar 

  68. Weiss F, Maldonado-Vlaar CS, Parsons EL, et al.: Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci U S A 2000, 97:4321–4326.

    Article  PubMed  CAS  Google Scholar 

  69. Neisewander JL, O’Dell LE, Tran-Nguyen LT, et al.: Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology 1996, 15:506–514.

    Article  PubMed  CAS  Google Scholar 

  70. Di Ciano P, Everitt BJ: The GABA(B) receptor agonist baclofen attenuates cocaine- and heroin-seeking behavior by rats. Neuropsychopharmacology 2003, 28:510–518.

    Article  PubMed  CAS  Google Scholar 

  71. Shoptaw S, Yang X, Rotheram-Fuller EJ, et al.: Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psychiatry 2003, 64:1440–1448. This clinical trial found that baclofen, a GABA agonist, promoted cocaine abstinence in addicted individuals.

    Article  PubMed  CAS  Google Scholar 

  72. McFarland K, Lapish CC, Kalivas PW: Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2003, 23:3531–3537.

    PubMed  CAS  Google Scholar 

  73. Erb S, Salmaso N, Rodaros D, et al.: A role for the CRFcontaining pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2001, 158:60–65.

    Google Scholar 

  74. Gryder DS, Rogawski MA: Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci 2003, 23:7069–7074.

    PubMed  CAS  Google Scholar 

  75. Brodie JD, Figueroa E, Dewey SL: Treating cocaine addiction: from preclinical to clinical trial experience with gamma-vinyl GABA. Synapse 2003, 50:261–265.

    Article  PubMed  CAS  Google Scholar 

  76. Gonzalez G, Sevarino K, Sofuoglu M, et al.: Tiagabine increases cocaine-free urines in cocaine-dependent methadone-treated patients: results of a randomized pilot study. Addiction 2003, 98:1625–1632.

    Article  PubMed  Google Scholar 

  77. Volkow ND, Wang J, Fowler S, et al.: Enhanced sensitivity to benzodiazepines in active cocaine-abusing subjects: a PET study. Am J Psychiatry 1998, 155:200–206. This neuroimaging study reported enhanced benzodiazepine sensitivity in cocaine-dependent patients. This finding supports GABA upregulation during cocaine dependence.

    PubMed  CAS  Google Scholar 

  78. Shoptaw S, Kintaudi PC, Charuvastra C, et al.: A screening trial of amantadine as a medication for cocaine dependence. Drug Alcohol Depend 2002, 66:217–224.

    Article  PubMed  CAS  Google Scholar 

  79. Carroll KM, Fenton LR, Ball SA, et al.: Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch Gen Psychiatry 2004, 61:264–272. This study reported efficacy for disulfiram in cocaine dependence, which was not a result of reduced alcohol intake. Disulfiram elevates cocaine levels (by inhibiting its metabolism) and enhances dopamine.

    Article  PubMed  CAS  Google Scholar 

  80. Haile CN, During MJ, Jatlow PI, et al.: Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psychiatry 2003, 54:915–921.

    Article  PubMed  CAS  Google Scholar 

  81. Ross MW, Hwang LY, Zack C, et al.: Sexual risk behaviours and STIs in drug abuse treatment populations whose drug of choice is crack cocaine. Int J STD AIDS 2002, 13:769–774.

    Article  PubMed  Google Scholar 

  82. Andersen ML, Tufik S: Distinct effects of paradoxical sleep deprivation and cocaine administration on sexual behavior in male rats. Addict Biol 2002, 7:251–253.

    Article  PubMed  CAS  Google Scholar 

  83. Hu M, Crombag HS, Robinson TE, et al.: Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 2004, 29:81–85.

    Article  PubMed  CAS  Google Scholar 

  84. Balfour ME, Yu L, Coolen LM: Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacology 2004, 29:718–730.

    Article  PubMed  CAS  Google Scholar 

  85. Carelli RM, Ijames SG, Crumling AJ: Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus "natural" (water and food) reward. J Neurosci 2000, 20:4255–4266.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dackis, C.A. Recent advances in the pharmacotherapy of cocaine dependence. Curr Psychiatry Rep 6, 323–331 (2004). https://doi.org/10.1007/s11920-004-0018-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-004-0018-8

Keywords

Navigation