Skip to main content

Advertisement

Log in

Current Neurostimulation Therapies for Chronic Pain Conditions

  • Anesthetic Techniques in Pain Management (D Wang, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurostimulation treatment options have become more commonly used for chronic pain conditions refractory to these options. In this review, we characterize current neurostimulation therapies for chronic pain conditions and provide an analysis of their effectiveness and clinical adoption. This manuscript will inform clinicians of treatment options for chronic pain.

Recent Findings

Non-invasive neurostimulation includes transcranial direct current stimulation and repetitive transcranial magnetic stimulation, while more invasive options include spinal cord stimulation (SCS), peripheral nerve stimulation (PNS), dorsal root ganglion stimulation, motor cortex stimulation, and deep brain stimulation. Developments in transcranial direct current stimulation, repetitive transcranial magnetic stimulation, spinal cord stimulation, and peripheral nerve stimulation render these modalities most promising for the alleviating chronic pain.

Summary

Neurostimulation for chronic pain involves non-invasive and invasive modalities with varying efficacy. Well-designed randomized controlled trials are required to delineate the outcomes of neurostimulatory modalities more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data are available within the text, tables, and figures of this article.

References

  1. Chronic pain: what you need to know. https://www.nccih.nih.gov/health/chronic-pain-what-you-need-to-know. Accessed 2023.

  2. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333.

    Article  PubMed  Google Scholar 

  3. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. Morb Mortal Wkly Rep. 2018;67(36):1001.

    Article  Google Scholar 

  4. Sauver JLS, Warner DO, Yawn BP, Jacobson DJ, McGree ME, Pankratz JJ, et al. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clinic Proceedings: Elsevier; 2013. p. 56–67.

  5. Murray CJ, Abraham J, Ali MK, Alvarado M, Atkinson C, Baddour LM, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–606.

    Article  PubMed  CAS  Google Scholar 

  6. Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization study in primary care. JAMA. 1998;280(2):147–51.

    Article  PubMed  CAS  Google Scholar 

  7. Smith BH, Elliott AM, Chambers WA, Smith WC, Hannaford PC, Penny K. The impact of chronic pain in the community. Fam Pract. 2001;18(3):292–9.

    Article  PubMed  CAS  Google Scholar 

  8. Simon LS. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. J Pain Palliat Care Pharmacother. 2012;26(2):197–8.

    Article  Google Scholar 

  9. Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain. 2009;10(11):1113–20.

    Article  PubMed  Google Scholar 

  10. Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–97.

    Article  PubMed  Google Scholar 

  11. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci. 2017;11:641.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wan R, Wang Y, Feng B, Jiang X, Xu Y, Zhang Z, et al. Effect of high-definition transcranial direct current stimulation on conditioned pain modulation in healthy adults: a crossover randomized controlled trial. Neuroscience. 2021;479:60–9.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang X, Wang Y, Wan R, Feng B, Zhang Z, Lin Y, et al. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: a single-blinded crossover controlled study. Neurosci Lett. 2022;767:136304.

    Article  PubMed  CAS  Google Scholar 

  14. Young J, Zoghi M, Khan F, Galea MP. The effect of transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis: randomized controlled trial. Pain Med. 2020;21(12):3451–7.

    Article  PubMed  Google Scholar 

  15. Harvey M-P, Martel M, Houde F, Daguet I, Riesco E, Léonard G. Relieving chronic musculoskeletal pain in older adults using transcranial direct current stimulation: effects on pain intensity, quality, and pain-related outcomes. Front Pain Res. 2022;3:817984.

    Article  Google Scholar 

  16. Mechsner S, Grünert J, Wiese JJ, Vormbäumen J, Sehouli J, Siegmund B, et al. Transcranial direct current stimulation to reduce chronic pelvic pain in endometriosis: phase II randomized controlled clinical trial. Pain Med. 2023:pnad031.

  17. Dalla Volta G, Marceglia S, Zavarise P, Antonaci F. Cathodal tDCS guided by thermography as adjunctive therapy in chronic migraine patients: a sham-controlled pilot study. Front Neurol. 2020;11:121.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McPhee ME, Graven-Nielsen T. Medial prefrontal high-definition transcranial direct current stimulation to improve pain modulation in chronic low back pain: a pilot randomized double-blinded placebo-controlled crossover trial. J Pain. 2021;22(8):952–67.

    Article  PubMed  Google Scholar 

  19. Wen Y-R, Shi J, Hu Z-Y, Lin Y-Y, Lin Y-T, Jiang X, et al. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci. 2022;15:1056966.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alwardat M, Pisani A, Etoom M, Carpenedo R, Chine E, Dauri M, et al. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J Neural Transm. 2020;127:1257–70.

    Article  PubMed  Google Scholar 

  21. Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AK. Is transcranial direct current stimulation (tDCS) effective for the treatment of pain in fibromyalgia? A systematic review and meta-analysis. J Pain. 2020;21(11–12):1085–100.

    Article  PubMed  Google Scholar 

  22. Teixeira PE, Pacheco-Barrios K, Branco LC, de Melo PS, Marduy A, Caumo W, et al. The analgesic effect of transcranial direct current stimulation in fibromyalgia: a systematic review, meta-analysis, and meta-regression of potential influencers of clinical effect. Neuromodulation. 2022.

  23. McCallion E, Robinson CS, Clark VP, Witkiewitz K. Efficacy of transcranial direct current stimulation-enhanced mindfulness-based program for chronic pain: a single-blind randomized sham controlled pilot study. Mindfulness. 2020;11:895–904.

    Article  Google Scholar 

  24. Gupta S, Goel D, Garg S, Tikka SK, Mishra P, Tyagi P. Effect of adjunctive transcranial direct current stimulation and cognitive behavior therapy on headache disability in episodic frequent or chronic tension-type headache: a pilot, exploratory study. Indian J Pain. 2022;36(3):140–6.

    Article  Google Scholar 

  25. Young NA, Sharma M, Deogaonkar M. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin. 2014;25(4):819–32.

    Article  Google Scholar 

  26. Ziemann U. TMS induced plasticity in human cortex. Rev Neurosci. 2004;15(4):253–66.

    Article  PubMed  Google Scholar 

  27. Xiong H-Y, Zheng J-J, Wang X-Q. Non-invasive brain stimulation for chronic pain: state of the art and future directions. Front Mol Neurosci. 2022;15:888716.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain. 2021;144(11):3328–39.

    Article  PubMed  Google Scholar 

  29. Wang H, Hu Y, Deng J, Ye Y, Huang M, Che X, et al. A randomised sham-controlled study evaluating rTMS analgesic efficacy for postherpetic neuralgia. Front Neurosci. 2023;17:1158737.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pinot-Monange A, Moisset X, Chauvet P, Gremeau A-S, Comptour A, Canis M, et al. Repetitive transcranial magnetic stimulation therapy (rTMS) for endometriosis patients with refractory pelvic chronic pain: a pilot study. J Clin Med. 2019;8(4):508.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol. 2020;60.

  32. Forogh B, Haqiqatshenas H, Ahadi T, Ebadi S, Alishahi V, Sajadi S. Repetitive transcranial magnetic stimulation (rTMS) versus transcranial direct current stimulation (tDCS) in the management of patients with fibromyalgia: a randomized controlled trial. Neurophysiol Clin. 2021;51(4):339–47.

    Article  PubMed  Google Scholar 

  33. De Martino E, Fernandes AM, Galhardoni R, Souza CDO, De Andrade DC, Graven-Nielsen T. Sessions of prolonged continuous theta burst stimulation or high-frequency 10 Hz stimulation to left dorsolateral prefrontal cortex for 3 days decreased pain sensitivity by modulation of the efficacy of conditioned pain modulation. J Pain. 2019;20(12):1459–69.

    Article  PubMed  Google Scholar 

  34. Lefaucheur J-P, Nguyen J-P. A practical algorithm for using rTMS to treat patients with chronic pain. Neurophysiol Clin. 2019;49(4):301–7.

    Article  PubMed  Google Scholar 

  35. Ahdab R, Ayache S, Brugières P, Goujon C, Lefaucheur J-P. Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin/Clin Neurophysiol. 2010;40(1):27–36.

    Article  CAS  Google Scholar 

  36. Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528.

    Article  PubMed  Google Scholar 

  37. Zhu Y, Li D, Zhou Y, Hu Y, Xu Z, Lei L, et al. Systematic review and meta-analysis of high-frequency rTMS over the dorsolateral prefrontal cortex. on chronic pain and chronic-pain-accompanied depression. ACS Chem Neurosci. 2022;13(17):2547–56.

    Article  PubMed  CAS  Google Scholar 

  38. Che X, Cash RF, Luo X, Luo H, Lu X, Xu F, et al. High-frequency rTMS over the dorsolateral prefrontal cortex on chronic and provoked pain: a systematic review and meta-analysis. Brain Stimul. 2021;14(5):1135–46.

    Article  PubMed  Google Scholar 

  39. Kalita J, Kumar S, Singh VK, Misra UK. A randomized controlled trial of high rate rTMS Versus rTMS and amitriptyline in chronic migraine. Pain Physician. 2021;24(6):E733.

    Article  PubMed  Google Scholar 

  40. Melzack R, Wall PD. Pain mechanisms: a new theory: a gate control system modulates sensory input from the skin before it evokes pain perception and response. Science. 1965;150(3699):971–9.

    Article  PubMed  CAS  Google Scholar 

  41. Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep. 2012;16:217–25.

    Article  PubMed  Google Scholar 

  42. Isagulyan E, Slavin K, Konovalov N, Dorochov E, Tomsky A, Dekopov A, et al. Spinal cord stimulation in chronic pain: technical advances. Korean J Pain. 2020;33(2):99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rigoard P, Billot M, Ingrand P, Durand-Zaleski I, Roulaud M, Peruzzi P, et al. How should we use multicolumn spinal cord stimulation to optimize back pain spatial neural targeting? A prospective, multicenter, randomized, double-blind, controlled trial (ESTIMET study). Neuromodulation. 2021;24(1):86–101.

    Article  PubMed  Google Scholar 

  44. Rigoard P, Basu S, Desai M, Taylor R, Annemans L, Tan Y, et al. Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial. Pain. 2019;160(6):1410.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lam CM, Latif U, Sack A, Govindan S, Sanderson M, Vu DT, et al. Advances in spinal cord stimulation. Bioengineering. 2023;10(2):185.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee KY, Bae C, Lee D, Kagan Z, Bradley K, Chung JM, et al. Low-intensity, kilohertz frequency spinal cord stimulation differently affects excitatory and inhibitory neurons in the rodent superficial dorsal horn. Neuroscience. 2020;428:132–9.

    Article  PubMed  CAS  Google Scholar 

  47. Amirdelfan K, Vallejo R, Benyamin R, Yu C, Yang T, Bundschu R, et al. High-frequency spinal cord stimulation at 10 kHz for the treatment of combined neck and arm pain: results from a prospective multicenter study. Neurosurgery. 2020;87(2):176.

    Article  PubMed  Google Scholar 

  48. Kapural L, Jameson J, Johnson C, Kloster D, Calodney A, Kosek P, et al. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J Neurosurg Spine. 2022;1(aop):1–12.

    Google Scholar 

  49. Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA Neurol. 2021;78(6):687–98.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, et al. High-frequency 10-kHz spinal cord stimulation improves health-related quality of life in patients with refractory painful diabetic neuropathy: 12-month results from a randomized controlled trial. Mayo Clin Proc Innov Qual Outcomes. 2022;6(4):347–60.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Conic RR, Caylor J, Cui CL, Reyes Z, Nelson E, Yin S, et al. Sex-specific differences in the efficacy of traditional low frequency versus high frequency spinal cord stimulation for chronic pain. Bioelectron Med. 2022;8(1):1–14.

    Article  Google Scholar 

  52. Kilchukov M, Kiselev R, Gorbatykh A, Klinkova A, Murtazin V, Kamenskaya O, et al. High-frequency versus low-frequency spinal cord stimulation in treatment of chronic limb-threatening ischemia: short-term results of a randomized trial. Stereotact Funct Neurosurg. 2023;101(1):1–11.

    Article  PubMed  Google Scholar 

  53. Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R. Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med. 2019;20(Supplement_1):S13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Demartini L, Terranova G, Innamorato MA, Dario A, Sofia M, Angelini C, et al. Comparison of tonic vs. burst spinal cord stimulation during trial period. Neuromodulation. 2019;22(3):327–32.

    Article  PubMed  Google Scholar 

  55. D’Souza RS, Strand N. Neuromodulation with burst and tonic stimulation decreases opioid consumption: a post hoc analysis of the success using neuromodulation with BURST (SUNBURST) randomized controlled trial. Neuromodulation. 2021;24(1):135–41.

    Article  PubMed  Google Scholar 

  56. Braun E, Khatri N, Kim B, Nazir N, Orr WN, Ballew A, et al. A prospective, randomized single-blind crossover study comparing high-frequency 10,000 Hz and burst spinal cord stimulation. Neuromodulation. 2022.

  57. Vesper J, Slotty P, Schu S, Poeggel-Kraemer K, Littges H, Van Looy P, et al. Burst SCS microdosing is as efficacious as standard burst SCS in treating chronic back and leg pain: results from a randomized controlled trial. Neuromodulation. 2019;22(2):190–3.

    Article  PubMed  Google Scholar 

  58. Vallejo R, Kelley CA, Gupta A, Smith WJ, Vallejo A, Cedeño DL. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: comparing high rate, low rate, and differential target multiplexed programming. Mol Pain. 2021;17:1744806921999013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fishman M, Cordner H, Justiz R, Provenzano D, Merrell C, Shah B, et al. Twelve-month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21(8):912–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Parker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain. 2012;153(3):593–601.

    Article  PubMed  Google Scholar 

  62. Brooker C, Russo M, Cousins MJ, Taylor N, Holford L, Martin R, et al. ECAP-Controlled closed-loop spinal cord stimulation efficacy and opioid reduction over 24-months: final results of the prospective, multicenter, open-label avalon study. Pain Pract. 2021;21(6):680–91.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 2020;19(2):123–34.

    Article  PubMed  Google Scholar 

  64. Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, et al. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med. 2023;48(6):273–87.

    Article  PubMed  Google Scholar 

  66. Chao D, Zhang Z, Mecca CM, Hogan QH, Pan B. Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents. Pain. 2020;161(12):2872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111–24.

    Article  PubMed  Google Scholar 

  68. Graham RD, Sankarasubramanian V, Lempka SF. Dorsal root ganglion stimulation for chronic pain: hypothesized mechanisms of action. J Pain. 2022;23(2):196–211.

    Article  PubMed  Google Scholar 

  69. Kent AR, Min X, Hogan QH, Kramer JM. Mechanisms of dorsal root ganglion stimulation in pain suppression: a computational modeling analysis. Neuromodulation. 2018;21(3):234–46.

    Article  PubMed  Google Scholar 

  70. Huygen FJ, Kallewaard JW, Nijhuis H, Liem L, Vesper J, Fahey ME, et al. Effectiveness and safety of dorsal root ganglion stimulation for the treatment of chronic pain: a pooled analysis. Neuromodulation. 2020;23(2):213–21.

    Article  PubMed  Google Scholar 

  71. Stelter B, Karri J, Marathe A, Abd-Elsayed A. Dorsal root ganglion stimulation for the treatment of non-complex regional pain syndrome related chronic pain syndromes: a systematic review. Neuromodulation. 2021;24(4):622–33.

    Article  PubMed  Google Scholar 

  72. Kallewaard JW, Nijhuis H, Huygen F, Wille F, Zuidema X, van de Minkelis J, et al. Prospective cohort analysis of DRG stimulation for failed back surgery syndrome pain following lumbar discectomy. Pain Pract. 2019;19(2):204–10.

    Article  PubMed  Google Scholar 

  73. Kretzschmar M, Reining M, Schwarz MA. Three-year outcomes after dorsal root ganglion stimulation in the treatment of neuropathic pain after peripheral nerve injury of upper and lower extremities. Neuromodulation. 2021;24(4):700–7.

    Article  PubMed  Google Scholar 

  74. Kallewaard JW, Edelbroek C, Terheggen M, Raza A, Geurts JW. A prospective study of dorsal root ganglion stimulation for non-operated discogenic low back pain. Neuromodulation. 2020;23(2):196–202.

    Article  PubMed  Google Scholar 

  75. Mons MR, Chapman KB, Terwiel C, Joosten EA, Kallewaard JW. Burst spinal cord stimulation as compared with L2 dorsal root ganglion stimulation in pain relief for nonoperated discogenic low back pain: analysis of two prospective studies. Neuromodulation. 2023.

  76. Parker T, Raghu A, Huang Y, Gillies MJ, FitzGerald JJ, Aziz T, et al. Paired acute invasive/non-invasive stimulation (PAINS) study: a phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimul. 2021;14(6):1576–85.

    Article  PubMed  Google Scholar 

  77. Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, et al. Best practices for dorsal root ganglion stimulation for chronic pain: guidelines from the American Society of Pain and Neuroscience. J Pain Res. 2023:839–79.

  78. Lin T, Gargya A, Singh H, Sivanesan E, Gulati A. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 2020;21(Supplement_1):S6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ristić D, Spangenberg P, Ellrich J. Analgesic and antinociceptive effects of peripheral nerve neurostimulation in an advanced human experimental model. Eur J Pain. 2008;12(4):480–90.

    Article  PubMed  Google Scholar 

  80. Deer TR, Esposito MF, McRoberts WP, Grider JS, Sayed D, Verrills P, et al. A systematic literature review of peripheral nerve stimulation therapies for the treatment of pain. Pain Med. 2020;21(8):1590–603.

    Article  PubMed  Google Scholar 

  81. Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral nerve stimulation for chronic pain: a systematic review of effectiveness and safety. Pain Ther. 2021;10:985–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lin C-P, Chang K-V, Wu W-T, Özçakar L. Ultrasound-guided peripheral nerve stimulation for knee pain: a mini-review of the neuroanatomy and the evidence from clinical studies. Pain Med. 2020;21(Supplement_1):S56–63.

    Article  PubMed  Google Scholar 

  83. Leplus A, Fontaine D, Donnet A, Regis J, Lucas C, Buisset N, et al. Long-term efficacy of occipital nerve stimulation for medically intractable cluster headache. Neurosurgery. 2021;88(2):375–83.

    Article  PubMed  Google Scholar 

  84. Raoul S, Nguyen JM, Kuhn E, de Chauvigny E, Lejczak S, Nguyen J-P, et al. Efficacy of occipital nerve stimulation to treat refractory occipital headaches: a single-institution study of 60 patients. Neuromodulation. 2020;23(6):789–95.

    Article  PubMed  Google Scholar 

  85. Lagrata S, Cheema S, Watkins L, Matharu M. Long-term outcomes of occipital nerve stimulation for new daily persistent headache with migrainous features. Neuromodulation. 2021;24(6):1093–9.

    Article  PubMed  Google Scholar 

  86. Wilbrink LA, de Coo IF, Doesborg PG, Mulleners WM, Teernstra OP, Bartels EC, et al. Safety and efficacy of occipital nerve stimulation for attack prevention in medically intractable chronic cluster headache (ICON): a randomised, double-blind, multicentre, phase 3, electrical dose-controlled trial. Lancet Neurol. 2021;20(7):515–25.

    Article  PubMed  CAS  Google Scholar 

  87. Garcia-Ortega R, Edwards T, Moir L, Aziz TZ, Green AL, FitzGerald JJ. Burst occipital nerve stimulation for chronic migraine and chronic cluster headache. Neuromodulation. 2019;22(5):638–44.

    Article  PubMed  Google Scholar 

  88. Ashkan K, Sokratous G, Göbel H, Mehta V, Gendolla A, Dowson A, et al. Peripheral nerve stimulation registry for intractable migraine headache (RELIEF): a real-life perspective on the utility of occipital nerve stimulation for chronic migraine. Acta Neurochir. 2020;162:3201–11.

    Article  PubMed  Google Scholar 

  89. Gilmore CA, Kapural L, McGee MJ, Boggs JW. Percutaneous peripheral nerve stimulation for chronic low back pain: prospective case series with 1 year of sustained relief following short-term implant. Pain Pract. 2020;20(3):310–20.

    Article  PubMed  Google Scholar 

  90. Gilmore CA, Ilfeld BM, Rosenow JM, Li S, Desai MJ, Hunter CW, et al. Percutaneous 60-day peripheral nerve stimulation implant provides sustained relief of chronic pain following amputation: 12-month follow-up of a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45(1):44–51.

    Article  Google Scholar 

  91. Strand N, D’Souza RS, Hagedorn JM, Pritzlaff S, Sayed D, Azeem N, et al. Evidence-based clinical guidelines from the American Society of Pain and Neuroscience for the use of implantable peripheral nerve stimulation in the treatment of chronic pain. J Pain Res. 2022:2483–504.

  92. DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front Neurosci. 2016;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Galafassi GZ, de Aguiar PHSP, Simm RF, Franceschini PR, Prist Filho M, Pagura JR, et al. Neuromodulation for medically refractory neuropathic pain: spinal cord stimulation, deep brain stimulation, motor cortex stimulation, and posterior insula stimulation. World Neurosurg. 2021;146:246–60.

    Article  PubMed  Google Scholar 

  94. Henssen D, Kurt E, van Walsum A-MVC, Kozicz T, van Dongen R, Bartels R. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep. 2020;10(1):7195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hamani C, Fonoff ET, Parravano DC, Silva VA, Galhardoni R, Monaco BA, et al. Motor cortex stimulation for chronic neuropathic pain: results of a double-blind randomized study. Brain. 2021;144(10):2994–3004.

    Article  PubMed  Google Scholar 

  96. Tan H, Yamamoto EA, Elkholy MA, Raslan AM. Treating chronic pain with deep brain stimulation. Curr Pain Headache Rep. 2023;27(1):11–7.

    Article  PubMed  Google Scholar 

  97. Frizon LA, Yamamoto EA, Nagel SJ, Simonson MT, Hogue O, Machado AG. Deep brain stimulation for pain in the modern era: a systematic review. Neurosurgery. 2020;86(2):191–202.

    Article  PubMed  Google Scholar 

  98. Qassim H, Zhao Y, Ströbel A, Regensburger M, Buchfelder M, de Oliveira DS, et al. Deep brain stimulation for chronic facial pain: an individual participant data (IPD) meta-analysis. Brain Sci. 2023;13(3):492.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Flouty O, Yamamoto K, Germann J, Harmsen IE, Jung HH, Cheyuo C, et al. Idiopathic Parkinson’s disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis. J Neurosurg. 2022;137(6):1821–30.

    Article  PubMed  CAS  Google Scholar 

  100. Aibar-Durán JÁ, Holzapfel MJÁ, Rodríguez RR, Nieto RB, Arnall CR, Teixido JM. Occipital nerve stimulation and deep brain stimulation for refractory cluster headache: a prospective analysis of efficacy over time. J Neurosurg. 2020;134(2):393–400.

    Article  PubMed  Google Scholar 

  101. Polanski WH, Zolal A, Klein J, Kitzler HH, Schackert G, Eisner W, et al. Somatosensory functional MRI tractography for individualized targeting of deep brain stimulation in patients with chronic pain after brachial plexus injury. Acta Neurochir. 2019;161:2485–90.

    Article  PubMed  Google Scholar 

  102. Bergeron D, Obaid S, Fournier-Gosselin M-P, Bouthillier A, Nguyen DK. Deep brain stimulation of the posterior insula in chronic pain: a theoretical framework. Brain Sci. 2021;11(5):639.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kashanian A, Tsolaki E, Pouratian N, Bari AA. Deep brain stimulation of the subgenual cingulate cortex for the treatment of chronic low back pain. Neuromodulation. 2022;25(2):202–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyuan Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlobin, N.A., Wu, C. Current Neurostimulation Therapies for Chronic Pain Conditions. Curr Pain Headache Rep 27, 719–728 (2023). https://doi.org/10.1007/s11916-023-01168-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01168-5

Keywords

Navigation