Skip to main content

Advertisement

Log in

Biologic poisons for pain

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Pain therapies from natural sources date back thousands of years to the use of plant and animal extracts for a variety of painful conditions and injuries. We certainly are all familiar with modern uses of plant-derived analgesic compounds such as opium derivatives from papaverum somniferum and salicylates from willow bark (Salix species). Local anesthetics were isolated from coca leaves in the late 1800s. Sarapin, derived from carnivorous pitcher plants, has been injected for regional analgesia in human and veterinary medicine, but efficacy is controversial. Biologic organisms can play important roles in developing an understanding of pain mechanisms, either from isolation of compounds that are analgesic or of compounds that produce pain, hyperalgesia, and allodynia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Manchikanti L, Pampati V, Fellows B, Bakhit CE: The diagnostic validity and therapeutic value of lumbar facet joint nerve blocks with or without adjuvant agents. Curr Rev Pain 2000, 4:337–344.

    PubMed  CAS  Google Scholar 

  2. Li KC, Chen J: Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience 2004, 126:753–762.

    Article  PubMed  CAS  Google Scholar 

  3. Rimsza ME, Zimmerman DR, Bergeson PS: Scorpion envenomation. Pediatrics 1980, 66:298–302.

    PubMed  CAS  Google Scholar 

  4. Perkins RA, Morgan SS: Poisoning, envenomation, and trauma from marine creatures. Am Fam Physician 2004, 69:885–890.

    PubMed  Google Scholar 

  5. Watters MR, Stommel EW: Marine neurotoxins: envenomations and contact toxins. Curr Treat Options Neurol 2004, 6:115–123.

    PubMed  Google Scholar 

  6. Haddad V Jr, Neto DG, de Paula Neto JB, et al.: Freshwater stingrays: study of epidemiologic, clinic, and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. Toxicon 2004, 43:287–294.

    Article  PubMed  CAS  Google Scholar 

  7. Apitz-Castro R, Beguin S, Tablante A, et al.: Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus). Thromb Haemost 1995, 73:94–100.

    PubMed  CAS  Google Scholar 

  8. Markwardt F: Hirudin as alternative anticoagulantL a historical review. Semin Thromb Hemost 2002, 28:405–414.

    Article  PubMed  CAS  Google Scholar 

  9. Daly JW, Kaneko T, Wilham J, et al.: Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Natl Acad Sci USA 2002, 99:13996–14001.

    Article  PubMed  CAS  Google Scholar 

  10. Daly JW, McNeal ET, Gusovsky F: Cardiotonic activities of pumiliotoxin B, pyrethroids, and a phorbol ester and their relationships with phosphatidylinositol turnover. Biochim Biophys Acta 1987, 930:470–474.

    Article  PubMed  CAS  Google Scholar 

  11. Matsui T, Ohtsuka Y, Sakai K: Recent advances in tetrodotoxin research. Yakugaku Zasshi 2000, 120:825–837.

    PubMed  CAS  Google Scholar 

  12. Blair NT, Bean BP: Roles of tetrodotoxin (TTX)-sensitive Na + current, TTX-resistant Na + current, and Ca2 + current in the action potentials of nociceptive sensory neurons. J Neurosci 2002, 22:10277–10290.

    PubMed  CAS  Google Scholar 

  13. Laird JM, Souslova V, Wood JN, Cervero F: Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 2002, 22:8352–8356.

    PubMed  CAS  Google Scholar 

  14. Minami T, Matsumura S, Nishizawa M, et al.: Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid. Br J Pharmacol 2004, 142:679–688.

    Article  PubMed  CAS  Google Scholar 

  15. Yokoyama K, Kurihara T, Makita K, Tanabe T: Plastic change of N-type Ca channel expression after preconditioning is responsible for prostaglandin E2-induced long-lasting allodynia. Anesthesiology 2003, 99:1364–1370.

    Article  PubMed  CAS  Google Scholar 

  16. Blank T, Nijholt I, Kye MJ, Spiess J: Small conductance Ca2 +-activated K + channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord 2004, 3:161–167. Emphasizes the importance of channel antagonists in the future development of centrally acting medications.

    Article  PubMed  CAS  Google Scholar 

  17. Voller B, Sycha T, Gustorff B, et al.: A randomized, doubleblind, placebo-controlled study on analgesic effects of botulinum toxin A. Neurology 2003, 61:940–944.

    PubMed  CAS  Google Scholar 

  18. Aoki KR: Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 2003, 43(suppl 1):S9-S15.

    Article  PubMed  Google Scholar 

  19. Smuts JA, Schultz D, Barnard A: Mechanism of action of botulinum toxin type a in migraine prevention: a pilot study. Headache 2004, 44:801–805.

    Article  PubMed  Google Scholar 

  20. Blumenfeld AM, Dodick DW, Silberstein SD: Botulinum neurotoxin for the treatment of migraine and other primary headache disorders. Dermatol Clin 2004, 22:167–175.

    Article  PubMed  CAS  Google Scholar 

  21. Dressler D, Bigalke H, Benecke R: Botulinum toxin type B in antibody-induced botulinum toxin type A therapy failure. J Neurol 2003, 250:1263–1265.

    Article  CAS  Google Scholar 

  22. Cardoso F: Botulinum toxin type B in the management of dystonia non-responsive to botulinum toxin type A. Arq Neuropsiquiatr 2003, 61:607–610.

    PubMed  Google Scholar 

  23. Kern U, Martin C, Scheicher S, Muller H: Long-term treatment of phantom and stump pain with botulinum toxin type A over 12 months: a first clinical observation. Nervenarzt 2004, 75:336–340.

    Article  PubMed  CAS  Google Scholar 

  24. Trosch R: (232) botulinum toxin type B decreases pain in patients with cervical dystonia. Pain Med 2001, 2:253.

    Article  Google Scholar 

  25. Fishman LM, Konnoth C, Rozner B: Botulinum neurotoxin type B and physical therapy in the treatment of piriformis syndrome: a dose-finding study. Am J Phys Med Rehabil 2004, 83:42–50.

    Article  PubMed  Google Scholar 

  26. Porta M, Maggioni G: Botulinum toxin (BoNT) and back pain. J Neurol 2004, 251(suppl 1):I15–118.

    PubMed  Google Scholar 

  27. Heading CE: Conus peptides and neuroprotection. Curr Opin Investig Drugs 2002, 3:915–920.

    PubMed  CAS  Google Scholar 

  28. Alonso D, Khalil Z, Satkunanthan N, Livett BG: Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. Mini Rev Med Chem 2003, 3:785–787. Excellent discourse on naturally occurring peptides and the future of drug development, not only analgesics, but other neurologically active agents.

    Article  PubMed  CAS  Google Scholar 

  29. Schroeder CI, Smythe ML, Lewis RJ: Development of small molecules that mimic the binding of omega-conotoxins at the N-type voltage-gated calcium channel. Mol Divers 2004, 8:127–134.

    Article  PubMed  CAS  Google Scholar 

  30. Zhan J, Chen X, Wang C, et al.: A fusion protein of conotoxin MVIIA and thioredoxin expressed in Escherichia coli has significant analgesic activity. Biochem Biophys Res Commun 2003, 311:495–500.

    Article  PubMed  CAS  Google Scholar 

  31. Daly NL, Ekberg JA, Thomas L, et al.: Structures of muO-conotoxins from Conus marmoreus: inhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem 2004, 279:25774–25782.

    Article  PubMed  CAS  Google Scholar 

  32. Scott DA, Wright CE, Angus JA: Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol 2002, 451:279–286.

    Article  PubMed  CAS  Google Scholar 

  33. Staats PS, Yearwood T, Charapata SG, et al.: Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized, controlled trial. JAMA 2004, 291:63–70.

    Article  PubMed  CAS  Google Scholar 

  34. Doggrell SA: Intrathecal ziconotide for refractory pain. Expert Opin Investig Drugs 2004, 13:875–877.

    Article  PubMed  CAS  Google Scholar 

  35. Webster L, Henderson R, Katz N, Ellis D: (233) characterization of confusion, an adverse event associated with intrathecal ziconotide infusion in chronic pain patients. Pain Med 2001, 2:253–254.

    Article  Google Scholar 

  36. Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al.: Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000, 25:274–278.

    Article  PubMed  CAS  Google Scholar 

  37. Dai Q, Liu F, Zhou Y, et al.: The synthesis of SO-3, a conopeptide with high analgesic activity derived from Conus striatus. J Nat Prod 2003, 66:1276–1279.

    Article  PubMed  CAS  Google Scholar 

  38. Dowell C, Olivera BM, Garrett JE, et al.: Alpha-conotoxin PIA is selective for alpha6 subunit-containing nicotinic acetylcholine receptors. J Neurosci 2003, 23:8445–8452.

    PubMed  CAS  Google Scholar 

  39. Chatterjee D, Mukherjee S, Smith MG, Das SK: Signal transduction events in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol 2003, 17:114–121.

    Article  PubMed  CAS  Google Scholar 

  40. Koltzenburg M: The role of TRP channels in sensory neurons. Novartis Found Symp 2004, 260:206–220, 277–279.

    Article  PubMed  CAS  Google Scholar 

  41. Bandell M, Story GM, Hwang SW, et al.: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41:849–857.

    Article  PubMed  CAS  Google Scholar 

  42. Jordt SE, Bautista DM, Chuang HH, et al.: Mustard oils and cannabinoids excite sensory nerve fibers through the TRP channel ANKTM1. Nature 2004, 427:260–265.

    Article  PubMed  CAS  Google Scholar 

  43. Helyes Z, Nemeth J, Than M, et al.: Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. Life Sci 2003, 73:2345–2353.

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Martinez C, Humet M, Planells-Cases R, et al.: Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci U S A 2002, 99:2374–2379.

    Article  PubMed  CAS  Google Scholar 

  45. Kim JH, Rivas DA, Shenot PJ, et al.: Intravesical resiniferatoxin for refractory detrusor hyperreflexia: a multicenter, blinded, randomized, placebo-controlled trial. J Spinal Cord Med 2003, 26:358–263.

    PubMed  Google Scholar 

  46. Lazzeri M, Spinelli M, Beneforti P, et al.: Intravesical infusion of resiniferatoxin by a temporary in situ drug delivery system to treat interstitial cystitis: a pilot study. Eur Urol 2004, 45:98–102.

    Article  PubMed  CAS  Google Scholar 

  47. Andersen ML, Santos EH, Seabra MdeL, et al.: Evaluation of acute and chronic treatments with Harpagophytum procumbens on Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol 2004, 91:325–330.

    Article  PubMed  Google Scholar 

  48. Jang MH, Lim S, Han SM, et al.: Harpagophytum procumbens suppresses lipopolysaccharide-stimulated expressions of cyclooxygenase-2 and inducible nitric oxide synthase in fibroblast cell line L929. J Pharmacol Sci 2003, 93:367–371.

    Article  PubMed  CAS  Google Scholar 

  49. Raduege KM, Kleshinski JF, Ryckman JV, Tetzlaff JE: Anesthetic considerations of the herbal, kava. J Clin Anesth 2004, 16:305–311.

    Article  PubMed  Google Scholar 

  50. http://www.cfsan.fda.gov/~dms/addskava.html. Accessed September 2004.

  51. Izzo AA, Ernst E: Interactions between herbal medicines and prescribed drugs: a systematic review. Drugs 2001, 61:2163–2175.

    Article  PubMed  CAS  Google Scholar 

  52. Caudle RM, Mannes AJ, Benoliel R, et al.: Intrathecally administered cholera toxin blocks allodynia and hyperalgesia in persistent pain models. J Pain 2001, 2:118–127.

    Article  PubMed  CAS  Google Scholar 

  53. Albensi BC, Alasti N, Mueller AL: Long-term potentiation in the presence of NMDA receptor antagonist arylalkylamine spider toxins. J Neurosci Res 2000, 62:177–185.

    Article  PubMed  CAS  Google Scholar 

  54. Lewis RJ, Garcia ML: Therapeutic potential of venom peptides. Nat Rev Drug Discov 2003, 2:790–802. Great review of the roles of future toxin-derived treatments.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisner, L. Biologic poisons for pain. Current Science Inc 8, 427–434 (2004). https://doi.org/10.1007/s11916-004-0063-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-004-0063-3

Keywords

Navigation