Skip to main content

Advertisement

Log in

Anabolic Agents for Postmenopausal Osteoporosis: How Do You Choose?

  • Therapeutics and Medical Management (S Jan De Beur and B Clarke, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There are now three anabolic agents available for the treatment of postmenopausal women at high risk for fracture. The purpose of this review is to supply a rationale to aid in determining which agent should be used in which clinical settings.

Recent Findings

Studies over the last decade have shown that anabolic agents produce faster and larger effects against fracture than antiresorptive agents. Furthermore, trials evaluating anabolic antiresorptive treatment sequences have shown that anabolic first treatment strategies produce the greatest benefits to bone density, particularly in the hip region. However, there are no head-to-head evaluations of the three anabolic therapies with fracture outcomes or bone density, and these studies are not likely to occur. How to decide which agent to use at which time in a woman’s life is unknown.

Summary

We review the most significant clinical trials of anabolic agents which have assessed fracture, areal or volumetric bone density, microarchitecture, and/or bone strength, as well as information gleaned from histomorphometry studies to provide a rationale for consideration of one agent vs another in various clinical settings. There is no definitive answer to this question; all three agents increase bone strength and reduce fracture risk rapidly. Since the postmenopausal lifespan could be as long as 40–50 years, it is likely that very high-risk women will utilize different anabolic agents at different points in their lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cosman F. Anabolic therapy and optimal treatment sequences for patients with osteoporosis at high risk for fracture. Endocr Pract. 2020;26:777–86.

    PubMed  Google Scholar 

  2. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    CAS  PubMed  Google Scholar 

  3. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316:722–33.

    CAS  PubMed  Google Scholar 

  4. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43.

    CAS  PubMed  Google Scholar 

  5. • Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391:230–40 This landmark study in 1360 women with prevalent vertebral fracture, at very high risk for subsequent fracture, compared teriparatide and risedronate head-to-head over 2 years. Compared with risedronate, teriparatide reduced vertebral fractures by 50% and reduced the number of nonvertebral fractures by 44%.

    CAS  PubMed  Google Scholar 

  6. • Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377:1417–27 This landmark study of 4093 women with prevalent vertebral fracture or recent hip fracture, at very high risk for subsequent fracture, compared romosozumab followed by alendronate for 1 year followed by alendronate in all women thereafter. Over the first year, vertebral fracture incidence was reduced by 37% and nonvertebral fracture incidence reduced by 26% in women on romosozumab compared with alendronate.

    CAS  PubMed  Google Scholar 

  7. Leder BZ, Mitlak B, Hu MY, Hattersley G, Bockman RS. Effect of abaloparatide vs alendronate on fracture risk reduction in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2020;105(3):938–43.

    Google Scholar 

  8. •• Balasubramanian A, Zhang J, Chen L, et al. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int. 2019;30:79–92 This very large Medicare database study in 377,561 evaluated recurrent fracture risk in women 65 years of age with a first fracture. Overall clinical fracture risk after the first fracture event was 10% in 1 year and 18% in 2 years. The data suggest that potent osteoporosis therapy should be initiated as soon as possible after a sentinel fracture event to prevent additional fractures.

    CAS  PubMed  Google Scholar 

  9. Kanis JA, Johansson H, Odén A, Harvey NC, Gudnason V, Sanders KM, et al. Characteristics of recurrent fractures. Osteoporos Int. 2018;29:1747–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roux C, Briot K. Imminent fracture risk. Osteoporos Int. 2017;28:1765–9.

    CAS  PubMed  Google Scholar 

  11. Gehlbach S, Saag KG, Adachi JD, Hooven FH, Flahive J, Boonen S, et al. Previous fractures at multiple sites increase the risk for subsequent fractures: the global longitudinal study of osteoporosis in women. J Bone Miner Res. 2012;27:645–53.

    PubMed  Google Scholar 

  12. van Helden S, Cals J, Kessels F, Brink P, Dinant GJ, Geusens P. Risk of new clinical fractures within 2 years following a fracture. Osteoporos Int. 2006;17:348–54.

    PubMed  Google Scholar 

  13. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3.

    CAS  PubMed  Google Scholar 

  14. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33:522–32.

    CAS  PubMed  Google Scholar 

  15. •• Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32:198–202 This paper was the first to highlight the consistent observation that hip BMD declines for 12–24 months in women switched from bisphosphonates or denosumab to teriparatide. The paper concludes that treatment with teriparatide as first-line therapy produces a greater hip BMD gain and likely superior strength, particularly against nonvertebral fracture, compared with the inverse sequence.

    CAS  PubMed  Google Scholar 

  16. Cosman F, Kendler D, Langdahl B, et al. Treatment Sequences with Romosozumab Before or After Antiresorptive Medication. J Bone Miner Res 2020; 35 (Suppl 1), Available at https://www.asbmr.org/ItineraryBuilder/PresentationDetail.aspx?pid=ea239907-6383-4bce-bfb1-1fde067749bf&ptag=SessionsList, Accessed [October 27, 2020].

  17. Ferrari S, Libanati C, Lin CJF, Brown JP, Cosman F, Czerwiński E, et al. Relationship between bone mineral density T-score and nonvertebral fracture risk over 10 years of denosumab treatment. J Bone Miner Res. 2019;34:1033–40.

    CAS  PubMed  Google Scholar 

  18. • Cosman F, Lewiecki EM, Ebeling P, et al. T-score as an indicator of fracture risk on therapy: evidence from romosozumab vs alendronate treatment in the ARCH trial. J Bone Miner Res. 2020;35:1333–42 This study highlights the importance of the total hip BMD level in patients on osteoporosis medication. It showed that the total hip T score achieved at 1 year on therapy with either romosozumab or alendronate is a major predictor of the subsequent risk of both vertebral and nonvertebral fractures. Consisent with the Ferrari paper (reference 17), in patients on denosumab, this study suggests that attaining a total hip T score above osteoporosis range should be one of our treatment goals in the management of osteoporosis.

    CAS  PubMed  Google Scholar 

  19. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the fracture intervention trial long-term extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.

    CAS  PubMed  Google Scholar 

  20. Cosman F, Cauley JA, Eastell R, Boonen S, Palermo L, Reid IR, et al. Reassessment of fracture risk in women after 3 years of treatment with zoledronic acid: when is it reasonable to discontinue treatment? J Clin Endocrinol Metab. 2014;99:4546–54.

    CAS  PubMed  Google Scholar 

  21. Cummings SR, Cosman F, Leweicki EM, et al. Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J Bone Miner Res. 2017;32:3–10.

    CAS  PubMed  Google Scholar 

  22. Cummings S, Libanati C, Hamilton C, et al. Probability of achieving T-scores goals above -2.5 with alendronate or romosozumab followed by alendronate or denosumab. J Bone Miner Res 2020; 35 (Suppl 1), Available at https://www.asbmr.org/ItineraryBuilder/PresentationDetail.aspx?pid=d8739d53-2c84-4db2-9d99-816babb42b20&ptag=WebItinerarySearch, Accessed [October 27, 2020].

  23. • Camacho PM, Petak SM, Binkley N, et al. American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis – 2020 Update. Endocr Pract. 2020;26(Suppl 1):1–44 The revised AACE guidelines are very important because they define the very high-risk patient and recommend first-line treatment with anabolic therapy for these patients. Very high-risk patients include those with recent fractures and multiple fractures, as well as those who start with a T score of − 3 or below. The authors suggest that these patients should be considered for treatment with abaloparatide, romosozumab, or teriparatide as initial therapy.

    PubMed  Google Scholar 

  24. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* clinical practice guideline. J Clin Endocrinol Metab. 2019;104:1595–622.

    PubMed  Google Scholar 

  25. Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society guideline update. J Clin Endocrinol Metab. 2020;105:587–94.

    Google Scholar 

  26. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone density. N Engl J Med. 2014;370:412–20.

    CAS  PubMed  Google Scholar 

  27. Gori F, Baron R. WNT signaling in skeletal homeostasis and disease. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman’s osteoporosis. 5th Edition (Two-Volume set) ed. San Diego: Academic Press/Elsevier Inc.; 2021. p. 257–79.

    Google Scholar 

  28. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology. 2016;157(1):141–9.

    CAS  PubMed  Google Scholar 

  29. Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB. Issues in modern bone histomorphometry. Bone. 2011;49(5):955–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou H, Dempster DW. Lessons from bone histomorphometry on the mechanism of action of osteoporosis drugs. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman’s Osteoporosis. 5th Edition (Two-Volume set) ed. San Diego: Academic Press/Elsevier Inc.; 2021. p. 1835–63.

    Google Scholar 

  31. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.

    CAS  PubMed  Google Scholar 

  32. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88(3):1150–6.

    CAS  PubMed  Google Scholar 

  33. Dobnig H, Sipos A, Jiang Y, Fahrleitner-Pammer A, Ste-Marie LG, Gallagher JC, et al. Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy. J Clin Endocrinol Metab. 2005;90(7):3970–7.

    CAS  PubMed  Google Scholar 

  34. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res. 2003;18(11):1932–41.

    CAS  PubMed  Google Scholar 

  35. Paschalis EP, Glass EV, Donley DW, Eriksen EF. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab. 2005;90(8):4644–9.

    CAS  PubMed  Google Scholar 

  36. Ma YL, Zeng Q, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21:855–64.

    CAS  PubMed  Google Scholar 

  37. Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JD, et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res. 2006;21(3):366–73.

    CAS  PubMed  Google Scholar 

  38. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, et al. Differential effects of teriparatide and denosumab on intact PTH and bone formation indices: AVA osteoporosis study. J Clin Endocrinol Metab. 2016;101:1353–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dempster DW, Cosman F, Zhou H, Nieves J, Bostrom M, Lindsay R. Effects of daily or cyclic teriparatide on bone formation in the iliac crest in women on no prior therapy and in women on alendronate. J Bone Miner Res. 2016;31:1518–26.

    CAS  PubMed  Google Scholar 

  40. Arlot M, Meunier PJ, Boivin G, Haddock L, Tamayo J, Correa-Rotter R, et al. Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res. 2005;20(7):1244–53.

    CAS  PubMed  Google Scholar 

  41. Dempster DW, Zhou H, Recker RR, Brown JP, Bolognese MA, Recknor C, et al. Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97:2799–808.

    CAS  PubMed  Google Scholar 

  42. Dempster DW, Zhou H, Recker RR, Brown JP, Bolognese MA, Recknor CP, et al. A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial. J Bone Miner Res. 2016;31:1429–39.

    CAS  PubMed  Google Scholar 

  43. Dempster DW, Zhou H, Ruff VA, Melby TE, Alam J, Taylor KA. Longitudinal effects of teriparatide or zoledronic acid on bone modeling- and remodeling-based formation in the SHOTZ study. J Bone Miner Res. 2018;33(4):627–33.

    CAS  PubMed  Google Scholar 

  44. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res. 2018;33(2):298–306.

    CAS  PubMed  Google Scholar 

  45. Dempster DW, Roschger P, Misof BM, Zhou H, Paschalis EP, Alam J, et al. Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ study. J Bone Miner Res. 2016;31(8):1527–35.

    CAS  PubMed  Google Scholar 

  46. • Cosman F, Dempster DW, Nieves JW, Zhou H, Zion M, Roimisher C, et al. Effect of teriparatide on bone formation in the human femoral neck. J Clin Endocrinol Metab. 2016;101(4):1498–505 This novel study was the first to show that teriparatide could stimulate bone formation in the proximal femur after just 4–6 weeks of administration similarly to what had previously been demonstrated in the iliac crest. Analyses of extent and location of bone formation in the femoral neck provide additional evidence for the ability of teriparatide to strengthen bone of the hip and reduce the likelihood of hip fracture.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rooney AM, Bostrom MPG, Dempster DW, Nieves JW, Zhou H, Cosman F. Loading modality and age influence teriparatide-induced bone formation in the human femoral neck. Bone. 2020;136:115373.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hodsman AB, Fraher LJ, Ostbye T, Adachi JD, Steer BM. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Invest. 1993;91(3):1138–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hodsman AB, Kisiel M, Adachi JD, Fraher LJ, Watson PH. Histomorphometric evidence for increased bone turnover without change in cortical thickness or porosity after 2 years of cyclical hPTH(1-34) therapy in women with severe osteoporosis. Bone. 2000;27(2):311–8.

    CAS  PubMed  Google Scholar 

  50. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104(4):439–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dempster DW, Nieves J, Zhou H, Bostrom M, Cosman F. Effects of teriparatide on modeling-based and remodeling-based bone formation in the human femoral neck. J Bone Miner Res 2020; 35 (Suppl 1), Available at: https://www.asbmr.org/ItineraryBuilder/PresentationDetail.aspx?pid=edf24b66-aee3-4fa5-b88b-06ac23975f04&ptag=WebItinerarySearch, Accessed [October 27, 2020].

  52. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OL, Courpron P, et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J. 1980;280(6228):1340–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reeve J, Bradbeer JN, Arlot M, Davies UM, Green JR, Hampton L, et al. hPTH 1-34 1991 treatment of osteoporosis with added hormone replacement therapy: biochemical, kinetic and histological responses. Osteoporos Int. 1991;1(3):162–70.

    CAS  PubMed  Google Scholar 

  54. Lindsay R, Nieves J, Formica C, Henneman E, Woelfert L, Shen V, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet. 1997;350(9077):550–5.

    CAS  PubMed  Google Scholar 

  55. McClung MR, San Martin J, Miller PD, et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med. 2005;165:1762–8.

    CAS  PubMed  Google Scholar 

  56. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab. 2000;85:3069–76.

    CAS  PubMed  Google Scholar 

  57. Cosman F, Nieves J, Woelfert L, Formica C, Gordon S, Shen V, et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res. 2001;16:925–31.

    CAS  PubMed  Google Scholar 

  58. Bradbeer JN, Arlot ME, Meunier PJ, Reeve J. Treatment of osteoporosis with parathyroid peptide (hPTH 1-34) and oestrogen: increase in volumetric density of iliac cancellous bone may depend on reduced trabecular spacing as well as increased thickness of packets of newly formed bone. Clin Endocrinol. 1992;37(3):282–9.

    CAS  Google Scholar 

  59. Ascenzi MG, Liao VP, Lee BM, Billi F, Zhou H, Lindsay R, et al. Parathyroid hormone treatment improves the cortical bone microstructure by improving the distribution of type I collagen in postmenopausal women with osteoporosis. J Bone Miner Res. 2012;27(3):702–12.

    CAS  PubMed  Google Scholar 

  60. Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, et al. Effects of teriparatide [recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res. 2003;18:539–43.

    CAS  PubMed  Google Scholar 

  61. Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Eriksen EF, Sato M, et al. Effects of teriparatide [rhPTH (1-34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone. 2005;36:948–58.

    CAS  PubMed  Google Scholar 

  62. Whitmarsh T, Treece GM, Gee AH, Poole KE. Mapping bone changes at the proximal femoral cortex of postmenopausal women in response to alendronate and teriparatide alone, combined or sequentially. J Bone Miner Res. 2015;30(7):1309–18.

    CAS  PubMed  Google Scholar 

  63. Moreira CA, Fitzpatrick LA, Wang Y, Recker RR. Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: the ACTIVE phase 3 trial. Bone. 2017;97:314–9.

    CAS  PubMed  Google Scholar 

  64. Dempster DW, Zhou H, Rao SD, Recknor C, Miller PD, Leder BZ, et al. Early effects of abaloparatide on bone formation and resorption indices in postmenopausal women with osteoporosis. J Bone Miner Res. 2021. https://doi.org/10.1002/jbmr.4243.

  65. Chavassieux P, Chapurlat R, Portero-Muzy N, Roux JP, Garcia P, Brown JP, et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res. 2019;34(9):1597–608.

    CAS  PubMed  Google Scholar 

  66. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, et al. Denosumab phase 3 bone histology study group. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256–65.

    CAS  PubMed  Google Scholar 

  67. Eriksen EF, Chapurlat R, Boyce R, Brown JP, Horlait S, Libanati C, Shi Y, Wagman RB, Chavassieux P. Extensive modeling-based bone formation after 2 months of romosozumab treatment: results from the FRAME clinical trial. J Bone Miner Res 2019;35 (Suppl 1). Available at https://www.asbmr.org/meetings/annualmeeting/AbstractDetail?aid=d112527c-6efe-46cd-96af-04ce66040dcd. Accessed [July 28, 2020].

  68. Frost HM. Bone’s mechanostat: A 2003 Update. Anat Rec Part A. 2003;275A:1081–101.

    Google Scholar 

  69. Rubin MR, Manavalan JS, Dempster DW, Shah J, Cremers S, Kousteni S, et al. Parathyroid hormone stimulates circulating osteogenic cells in hypoparathyroidism. J Clin Endocrinol Metab. 2011;96(1):176–86. https://doi.org/10.1210/jc.2009-2682.

    Article  CAS  PubMed  Google Scholar 

  70. Ominsky MS, Brown DL, Van G, Cordover D, Pacheco E, Frazier E, et al. Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone. 2015;81:380–91.

    CAS  PubMed  Google Scholar 

  71. Gerbaix M, Amman P, Ferrari S. Mechanically driven counter-regulation of cortical bone formation in response to sclerostin-neutralizing antibodies. J Bone Miner Res. 2020. https://doi.org/10.1002/jbmr.4193.

  72. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32:426–38.

    CAS  PubMed  Google Scholar 

  73. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312–21.

    CAS  PubMed  Google Scholar 

  74. Saag KG, Shane E, Boonen S, Marín F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028–39.

    CAS  PubMed  Google Scholar 

  75. Hadji P, Zanchetta JR, Russo L, Recknor CP, Saag KG, McKiernan FE, et al. The effect of teriparatide compared with risedronate on reduction of back pain in postmenopausal women with osteoporotic vertebral fractures. Osteoporos Int. 2012;23:2141–50.

    CAS  PubMed  Google Scholar 

  76. Malouf-Sierra J, Tarantino U, Garcia-Hernandez A, Corradini C, et al. Effect of teriparatide or risedronate in elderly patients with a recent pertrochanteric hip fracture: final results of a 78-week randomized clinical trial. J Bone Miner Res. 2017;32:1040–51.

    CAS  PubMed  Google Scholar 

  77. Cosman F, Miller PD, Williams GC, Hattersley G, Hu MY, Valter I, et al. Eighteen months of treatment with subcutaneous abaloparatide followed by 6 months of treatment with alendronate in postmenopausal women with osteoporosis: results of the ACTIVExtend trial. Mayo Clin Proc. 2017;92:200–10.

    CAS  PubMed  Google Scholar 

  78. Bone HG, Cosman F, Miller PD, Williams GC, Hattersley G, Hu MY, et al. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103:2949–57.

    PubMed  PubMed Central  Google Scholar 

  79. Jolette J, Attalla B, Varela A, Long GG, Mellal N, Trimm S, et al. Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1-34). Regul Toxicol Pharmacol. 2017;86:356–65.

    CAS  PubMed  Google Scholar 

  80. Vahle JL, Zuehlke U, Schmidt A, Westmore M, Chen P, Sato M. Lack of bone neoplasms and persistence of bone efficacy in cynomolgus macaques after long-term treatment with teriparatide [rhPTH(1-34)]. J Bone Miner Res. 2008;23:2033–9.

    CAS  PubMed  Google Scholar 

  81. Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH, et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res. 2012;27:2429–37.

    CAS  PubMed  Google Scholar 

  82. Von Scheele B, Martin RD, Gilsenan AW, et al. The European postmarketing adult osteosarcoma surveillance study: characteristics of patients, a preliminary report. Acta Orthop. 2009;80:67–74.

    Google Scholar 

  83. Gilsenan A, Harding A, Kellier-Steele N, Harris D, Midkiff K, Andrews E. The Forteo patient registry linkage to multiple state cancer registries: study design and results from the first 8 years. Osteoporos Int. 2018;29:2335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cosman F, Crittenden DB, Ferrari S, Lewiecki EM, Jaller-Raad J, Zerbini C, et al. Romosozumab FRAME study: a post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J Bone Miner Res. 2018;33(8):1407–16.

    CAS  PubMed  Google Scholar 

  85. • Cummings S, McCullogh C. Explanations for the difference in rates of cardiovascular events in a trial of alendronate and romosozumab. Osteoporos Int. 2020;31:1019–21 This important editorial analyzes the incidence and pattern of major adverse cardiovascular events from the FRAME and ARCH trials and suggests that the imbalance of events seen with romosozumab in ARCH but not in FRAME is likely due to chance.

    CAS  PubMed  Google Scholar 

  86. Turk JR, Deaton AM, Yin J, Stolina M, Felx M, Boyd G, et al. Nonclinical cardiovascular safety evaluation of romosozumab, an inhibitor of sclerostin for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Regul Toxicol Pharmacol. 2020;115:104697.

    CAS  PubMed  Google Scholar 

  87. Bovijn J, Krebs K, Chen C-Y, et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med. 2020;12:eaay6570.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. • Cosman F, Peterson LR, Towler DA, Mitlak B, Wang Y, Cummings SR. Cardiovascular Safety of Abaloparatide in Postmenopausal Women With Osteoporosis: Analysis From the ACTIVE Phase 3 Trial. J Clin Endocrinol Metab. 2020;105(11):dgaa450. https://doi.org/10.1210/clinem/dgaa450This paper analyzed major cardiac events with abaloparatide and teriparatide compared with placebo from the ACTIVE trial in 2463 women. It shows that there was no increased risk of serious cardiovascular events by either agent and, in fact, time to first major event (heart attack, stroke, heart failure, and cardiovascular death) appeared significantly longer with both agents compared with placebo.

    Article  PubMed  Google Scholar 

  89. Bilezikian J, Hattersley G, Mitlak BH, et al. Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial. Curr Med Res Opin. 2019;35:2097–102.

    CAS  PubMed  Google Scholar 

  90. Miller PD, Cheung AM, Reid I, Rojeski M, Vanderkelen M, Ruiz Santiago N, et al. Efficacy and safety of romosozumab vs alendronate is similar across different levels of renal function among postmenopausal women with osteoporosis. J Endocr Soc. 2020;4(Issue Supplement_1):MON-378. https://doi.org/10.1210/jendso/bvaa046.050.

    Article  PubMed Central  Google Scholar 

  91. Miller PD, Chines A, Albergaria B-H, Gielen E, Langdahl B, Miyauchi A, Vanderkelen M, Milmont CE, Maddox J, Adachi J. Efficacy and safety of romosozumab vs placebo among patients with mild-to-moderate chronic kidney disease (CKD). J Bone Miner Res 202932 (Suppl 1)Available at https://www.asbmr.org/meetings/annualmeeting/AbstractDetail?aid=929df174-0beb-4b05-8b9c-594e553b9929 Accessed [October 27, 2020}.

  92. Dhaliwal R, Hans D, Hattersley G, et al. Abaloparatide in postmenopausal women with osteoporosis and type 2 diabetes: a post hoc analysis of the ACTIVE study. JBMR Plus 2020; 4(4).

  93. Geusens P, Marin F, Kendler DL, Russo LA, Zerbini CA, Minisola S, et al. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J Bone Miner Res. 2018;33(5):783–94.

    CAS  PubMed  Google Scholar 

  94. Marcus R, Wang O, Satterwhite J, Mitlak B. The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res. 2003;18:18–23.

    CAS  PubMed  Google Scholar 

  95. Cosman F, Hattersley G, Hu MY, Williams GC, Fitzpatrick LA, Black DM. Effects of abaloparatide-SC on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res. 2017;32:17–23.

    CAS  PubMed  Google Scholar 

  96. McClung MR, Harvey NC, Fitzpatrick LA, et al. Effects of abaloparatide on bone mineral density and risk of fracture in postmenopausal women aged 80 years or older with osteoporosis. Menopause. 2018;25:767–71.

    PubMed  PubMed Central  Google Scholar 

  97. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9.

    PubMed  Google Scholar 

  98. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Geusens P, Oates M, Miyauchi A, Adachi JD, Lazaretti-Castro M, Ebeling PR, et al. The effect of 1 year of romosozumab on the incidence of clinical vertebral fractures in postmenopausal women with osteoporosis: results from the FRAME study. JBMR Plus. 2019;3:e10211.

    PubMed  PubMed Central  Google Scholar 

  100. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22(1):149–57.

    CAS  PubMed  Google Scholar 

  101. Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, et al. Greater gains in spine and hip strength for romosozumab compared with teriparatide in postmenopausal women with low bone mass. J Bone Miner Res. 2017;32(9):1956–62.

    CAS  PubMed  Google Scholar 

  102. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet. 2015;386(9999):1147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bilezikian JP, Hattersley G, Fitzpatrick LA, Harris AG, Shevroja E, Banks K, et al. Abaloparatide-SC improves trabecular microarchitecture as assessed by trabecular bone score (TBS): a 24-week randomized clinical trial. Osteoporos Int. 2018;29(2):323–8.

    CAS  PubMed  Google Scholar 

  104. Tsai JN, Jiang LA, Lee H, Hans D, Leder BZ. Effects of teriparatide, denosumab, or both on spine trabecular microarchitecture in DATA-Switch: a randomized controlled trial. J Clin Densitom. 2017;20(4):507–12.

    PubMed  PubMed Central  Google Scholar 

  105. Eriksen EF, Keaveny TM, Gallagher ER, Krege JH. Literature review: the effects of teriparatide therapy at the hip in patients with osteoporosis. Bone. 2014;67:246–56.

    CAS  PubMed  Google Scholar 

  106. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res. 2011;26(5):1002–11. https://doi.org/10.1002/jbmr.305.

    Article  CAS  PubMed  Google Scholar 

  107. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, et al. Cummings SR; fracture intervention trial. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85(11):4118–24.

    CAS  PubMed  Google Scholar 

  108. Díez-Pérez A, Marin F, Eriksen EF, Kendler DL, et al. Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: a systematic review and meta-analysis. Bone. 2019;120:1–8.

    PubMed  Google Scholar 

  109. Simpson EL, Martyn-St James M, Hamilton J, Wong R, Gittoes N, Selby P, et al. Clinical effectiveness of denosumab, raloxifene, romosozumab, and teriparatide for the prevention of osteoporotic fragility fractures: a systematic review and network meta-analysis. Bone. 2020;130:115081.

    CAS  PubMed  Google Scholar 

  110. Winzenrieth R, Ominsky MS, Wang Y, Humbert L, Weiss RJ. Differential effects of abaloparatide and teriparatide on hip cortical volumetric BMD by DXA-based 3d modeling. Endocrine Society Abstract SUN-385. J Endocrine Soc 2020; A129; https://doi.org/10.1210/jendso/bvaa046

  111. Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K. Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone. 2012;50(1):165–70.

    CAS  PubMed  Google Scholar 

  112. Paggiosi MA, Yang L, Blackwell D, Walsh JS, McCloskey E, Peel N, et al. Teriparatide treatment exerts differential effects on the central and peripheral skeleton: results from the MOAT study. Osteoporos Int. 2018;29(6):1367–78.

    CAS  PubMed  Google Scholar 

  113. Watts N, Hattersley G, Fitzpatrick L, et al. Abaloparatide effect on forearm bone mineral density and wrist fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2019;30:1187–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsai JN, Uihlein AV, Burnett-Bowie SA, Neer RM, Zhu Y, Derrico N, et al. Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT study. J Bone Miner Res. 2015;30(1):39–45.

    CAS  PubMed  Google Scholar 

  115. Tsai JN, Nishiyama KK, Lin D, Yuan A, Lee H, Bouxsein ML, et al. Effects of denosumab and teriparatide transitions on bone microarchitecture and estimated strength: the DATA-Switch HR-pQCT study. J Bone Miner Res. 2017;32(10):2001–9.

    CAS  PubMed  Google Scholar 

  116. Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet. 2017;390(10102):1585–94.

    CAS  PubMed  Google Scholar 

  117. McClung M, Bolognese MA, Brown JP, Reginster J-Y, Langdahl BL, Ruiz-Santiago N, Shi Y, Rojeski M, Timoshanko J, Libanati C, Kassahun H, Oates M. Romosozumab after denosumab improves lumbar spine and maintains total hip bone mineral density in postmenopausal women with low bone mass J Bone Miner Res 2019;35 (Suppl 1). Available at https://www.asbmr.org/ItineraryBuilder/PresentationDetail.aspx?pid=4e8cf911-5a4d-46b1-88fd-b4f2a1022414&ptag=WebItinerarySearch. Accessed [October 27,2020].

  118. Cosman F, Keaveny TM, Kopperdahl D, Wermers RA, Wan X, Krohn KD, et al. Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res. 2013;28(6):1328–36.

    CAS  PubMed  Google Scholar 

  119. Cosman F, Wermers RA, Recknor C, Mauck KF, Xie L, Glass EV, et al. Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J Clin Endocrinol Metab. 2009;94(10):3772–80.

    CAS  PubMed  Google Scholar 

  120. Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20(6):962–70.

    CAS  PubMed  Google Scholar 

  121. Delmas PD, Licata AA, Reginster JY, Crans GG, Chen P, Misurski DA, et al. Fracture risk reduction during treatment with teriparatide is independent of pretreatment bone turnover. Bone. 2006;39(2):237–43.

    CAS  PubMed  Google Scholar 

  122. Blumsohn A, Marin F, Nickelsen T, Brixen K, Sigurdsson G, de la Vera González J, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int. 2011;22(6):1935–46.

    CAS  PubMed  Google Scholar 

  123. McCloskey EV, Johansson H, Oden A, Harvey NC, Jiang H, Modin S, et al. The effect of abaloparatide-SC on fracture risk is independent of baseline FRAX fracture probability: a post hoc analysis of the ACTIVE study. J Bone Miner Res. 2017;32:1625–31.

    CAS  PubMed  Google Scholar 

  124. McCloskey EV, Fitzpatrick LA, Hu MY, Williams G, Kanis JA. Effect of abaloparatide on vertebral, nonvertebral, major osteoporotic, and clinical fractures in a subset of postmenopausal women at increased risk of fracture by FRAX probability. Arch Osteoporos. 2019;14:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. McCloskey EV, Helena Johansson H, Harvey NC, Lorentzon M, Shi Y, Kanis JA. Romosozumab efficacy on fracture outcomes is greater in patients at high baseline risk: a post-hoc analysis of the first year of the FRAME study. Osteoporos Int. 2021. https://doi.org/10.1007/s00198-020-05815-0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicia Cosman.

Ethics declarations

Conflict of Interest

Felicia Cosman, MD: Amgen Inc., Grants and medication supply for research, Advisory Board and Consulting Fees, Honoraria for promotional speaking. Radius Health: Grants and medication supply for research, Advisory Board and Consulting Fees, Honoraria for promotional speaking. David W. Dempster, PhD: Amgen Inc., Grants and medication supply for research, Advisory Board and Consulting Fees, Honoraria for promotional speaking. Radius Health: Grants and medication supply for research, Advisory Board and Consulting Fees, Honoraria for promotional speaking.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Therapeutics and Medical Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosman, F., Dempster, D.W. Anabolic Agents for Postmenopausal Osteoporosis: How Do You Choose?. Curr Osteoporos Rep 19, 189–205 (2021). https://doi.org/10.1007/s11914-021-00663-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00663-1

Keywords

Navigation