Skip to main content

Advertisement

Log in

Delivery of RNAi-Based Therapeutics for Bone Regeneration

  • Regenerative Biology and Medicine in Osteoporosis (S Bryant and M Krebs, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The clinical significance, target pathways, recent successes, and challenges that preclude translation of RNAi bone regenerative approaches are overviewed.

Recent Findings

RNA interference (RNAi) is a promising new therapeutic approach for bone regeneration by stimulating or inhibiting critical signaling pathways. However, RNAi suffers from significant delivery challenges. These challenges include avoiding nuclease degradation, achieving bone tissue targeting, and reaching the cytoplasm for mRNA inhibition. Many drug delivery systems have overcome stability and intracellular localization challenges but suffer from protein adsorption that results in clearance of up to 99% of injected dosages, thus severely limiting drug delivery efficacy.

Summary

While RNAi has myriad promising attributes for use in bone regenerative applications, delivery challenges continue to plague translation. Thus, a focus on drug delivery system development is critical to provide greater delivery efficiency and bone targeting to reap the promise of RNAi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lam JK, et al. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yau WWY, et al. Directing stem cell fate by controlled RNA interference. Biomaterials. 2012;33(9):2608–28.

    Article  CAS  PubMed  Google Scholar 

  3. • Adams D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21 This paper details results from the Phase 3 clinical trial of Patisiran that resulted in the first FDA approved siRNA therapy to treat hereditary transthyretin amyloidosis.

    Article  CAS  PubMed  Google Scholar 

  4. Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol. 2016;40:125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Newman MR, Benoit DSW. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: a review. Eur J Pharm Biopharm. 2018;127:223–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarett SM, Nelson CE, Duvall CL. Technologies for controlled, local delivery of siRNA. J Control Release. 2015;218:94–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghadakzadeh S, Mekhail M, Aoude A, Tabrizian M, Hamdy RC. Small players ruling the hard game: siRNA in bone regeneration. J Bone Miner Res. 2016;31(7):1481.

    Article  PubMed  Google Scholar 

  8. Liu X. Bone site-specific delivery of siRNA. J Biomed Res. 2016;30(4):264–71.

    PubMed  Google Scholar 

  9. Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Rosemont: American Academy of Orthopaedic Surgeons; 1999.

    Google Scholar 

  10. Stewart, S., et al., Translational regenerative medicine. Bone regeneration, ed. A. Atala and J.G. Alllickson. Vol. 1.2015: Elsevier606.

  11. Andersson GBJ, et al. United States bone and joint decade: the burden of musculoskeletal diseases in the United States. Rosemont: American Academy of Orthopaedic Surgeons; 2008. p. 97–161.

    Google Scholar 

  12. Komatsu DE, Warden SJ. The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem. 2010;109(2):302–11.

    CAS  PubMed  Google Scholar 

  13. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schindeler A, McDonald M, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008;19(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  15. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.

    Article  CAS  PubMed  Google Scholar 

  16. Ratko TA, et al. Bone morphogenetic protein: the state of the evidence of on-label and off-label use. Rockville (MD); 2010.

  17. Kolar P, et al. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res. 2011;469(11):3118–26.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Franz-Odendaal TA. Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed). 2011;16:2734–46.

    Article  CAS  Google Scholar 

  19. Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harris WH, Heaney RP. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969;280(5):253–9 contd.

    Article  CAS  PubMed  Google Scholar 

  21. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  22. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci U S A. 1981;78(5):3204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–51.

    Article  CAS  PubMed  Google Scholar 

  24. Pfeilschifter J, Mundy GR. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987;84(7):2024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oreffo RO, Mundy GR, Seyedin SM, Bonewald LF. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun. 1989;158(3):817–23.

    Article  CAS  PubMed  Google Scholar 

  26. Dallas SL, Rosser JL, Mundy GR, Bonewald LF. Proteolysis of latent transforming growth factor-beta (TGF-beta )-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem. 2002;277(24):21352–60.

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanamura H, et al. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop Relat Res. 1980;148:281–90.

    CAS  Google Scholar 

  29. Fiedler J, Röderer G, Günther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem. 2002;87(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  30. Rubin J, Ackert-Bicknell CL, Zhu L, Fan X, Murphy TC, Nanes MS, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab. 2002;87(9):4273–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17(2 Suppl):93S–8S.

    Article  CAS  PubMed  Google Scholar 

  32. Mohan S, Baylink DJ. Insulin-like growth factor system components and the coupling of bone formation to resorption. Horm Res. 1996;45(Suppl 1):59–62.

    Article  CAS  PubMed  Google Scholar 

  33. Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35(2):213–23.

    Article  PubMed  Google Scholar 

  34. Kirker-Head CA, Boudrieau RJ, Kraus KH. Use of bone morphogenetic proteins for augmentation of bone regeneration. J Am Vet Med Assoc. 2007;231(7):1039–55.

    Article  CAS  PubMed  Google Scholar 

  35. Rozen N, Lewinson D, Bick T, Jacob ZC, Stein H, Soudry M. Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48. Bone. 2007;41(3):437–45.

    Article  CAS  PubMed  Google Scholar 

  36. Lian JB, Stein GS, van Wijnen A, Stein JL, Hassan MQ, Gaur T, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012;8(4):212–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26(8):1953–63.

    Article  CAS  PubMed  Google Scholar 

  38. Darwech I, Otero J, Alhawagri M, Dai S, Abu-Amer Y. Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis. J Cell Biochem. 2009;108(6):1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fahid FS, et al. Application of small interfering RNA for inhibition of lipopolysaccharide-induced osteoclast formation and cytokine stimulation. J Endod. 2008;34(5):563–9.

    Article  PubMed  Google Scholar 

  40. Lee NK, et al. RANKL-induced schlafen2 is a positive regulator of osteoclastogenesis. Cell Signal. 2008;20(12):2302–8.

    Article  CAS  PubMed  Google Scholar 

  41. • Sezlev Bilecen D, Uludag H, Hasirci V. Development of PEI-RANK siRNA complex loaded PLGA nanocapsules for the treatment of osteoporosis. Tissue Eng Part A. 2019;25(1–2):34–43 This report showed immense promise of controlled release of poly(ethylene imine)-siRNA complexes targeting receptor activator of nuclear factor kappa B (RANK) from poly(lactic acid-co-glycolic acid) nanocapsules to treat osteoporosis. Though in vivo studies are pending, longitudinal knockdown suppressed osteoclast differentiation by ~50%.

    Article  CAS  PubMed  Google Scholar 

  42. Cui Z-K, Fan J, Kim S, Bezouglaia O, Fartash A, Wu BM, et al. Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. J Control Release. 2015;217:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Wang Y, Malcolm DW, Benoit DSW. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials. 2017;139:127–38 This work was the first report of siRNA to improve fracture healing. Specifically, siRNA-NP complexes, which target WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1), via localized, controlled release from hydrogels expedites fracture healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lietman SA. Reduction in Gsalpha induces osteogenic differentiation in human mesenchymal stem cells. Clin Orthop Relat Res. 2005;434:231–8.

    Article  Google Scholar 

  45. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009;119(12):3666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Zhang Y, et al. Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects. Sci Rep. 2016;4:26925 Longitudinal semaphorin4d (Sema4d) knockdown was achieved using siRNA-poly(aspartic acid)-stearylated octaarginine complexes controllably released from a poly(L-lactic acid) (PLLA) scaffold in a 3 mm femur defect in osteoporotic rats. Higher bone volume/total volume bone mineral density and number of osteoblasts were observed in rats treated with scaffolds loaded with siRNA-Sema4d.

    Article  CAS  Google Scholar 

  47. Zhang Y, Wei L, Miron RJ, Zhang Q, Bian Z. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d. J Dent Res. 2014;93(11):1095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, et al. MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol. 2018;2018.

  49. Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, et al. The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials. 2013;34(21):5048–58.

    Article  CAS  PubMed  Google Scholar 

  50. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006;281(7):4326–33.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao L, et al. Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J Bone Miner Res. 2010;25(6):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shu L, Zhang H, Boyce BF, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res. 2013;28(9):1925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, et al. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells. 2011;29(10):1601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Xing L. Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells. 2013;31(8):1574–83.

    Article  CAS  PubMed  Google Scholar 

  55. Bhandari D, Robia SL, Marchese A. The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Mol Biol Cell. 2009;20(5):1324–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, et al. Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem. 2008;283(34):23084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell. 2005;121(1):101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao Z, et al. NF-kappaB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res. 2013.

  59. Nguyen MK, et al. Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials. 2014;35(24):6278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huynh CT, et al. Cytocompatible catalyst-free photodegradable hydrogels for light-mediated RNA release to induce hMSC osteogenesis. ACS Biomater Sci Eng. 2017.

  61. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, et al. Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 2013;28(3):559–73.

    Article  CAS  PubMed  Google Scholar 

  62. Mei Y, Bian C, Li J, du Z, Zhou H, Yang Z, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem. 2013;114(6):1374–84.

    Article  CAS  PubMed  Google Scholar 

  63. Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42(26):7967–75.

    Article  CAS  PubMed  Google Scholar 

  65. Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology. 2005;41(6):1349–56.

    Article  CAS  PubMed  Google Scholar 

  66. Sorrentino S. The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett. 2010;584(11):2194–200.

    Article  CAS  PubMed  Google Scholar 

  67. Weickmann JL, Glitz DG. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem. 1982;257(15):8705–10.

    CAS  PubMed  Google Scholar 

  68. Hickerson RP, Vlassov AV, Wang Q, Leake D, Ilves H, Gonzalez-Gonzalez E, et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides. 2008;18(4):345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zamecnik J, et al. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol. 2004;30(4):338–50.

    Article  CAS  PubMed  Google Scholar 

  70. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  71. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(Pt 8):1183–9.

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Lu Z, Wientjes MG, Au JL. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 2008;18(4):305–19.

    Article  CAS  PubMed  Google Scholar 

  75. Ku SH, Jo SD, Lee YK, Kim K, Kim SH. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.

    Article  CAS  PubMed  Google Scholar 

  76. Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  77. Dar SA, et al. siRNAmod: a database of experimentally validated chemically modified siRNAs. Sci Rep. 2016:6.

  78. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9(9):1034–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342(3):919–27.

    Article  CAS  PubMed  Google Scholar 

  80. Eberle F, et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol. 2008;180(5):3229–37.

    Article  CAS  PubMed  Google Scholar 

  81. Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13(3):494–505.

    Article  CAS  PubMed  Google Scholar 

  82. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  83. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–8.

    Article  CAS  PubMed  Google Scholar 

  84. Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett. 2004;14(19):4975–7.

    Article  CAS  PubMed  Google Scholar 

  85. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25(10):1149–57.

    Article  CAS  PubMed  Google Scholar 

  86. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

    Article  CAS  PubMed  Google Scholar 

  87. Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Investig Dermatol. 2019;139(5):1073–81.

    Article  CAS  PubMed  Google Scholar 

  88. Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconjug Chem. 2009;20(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  89. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  CAS  PubMed  Google Scholar 

  90. Akinc A, Querbes W, de S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garber K. Alnylam terminates revusiran program, stock plunges. Nat Publ Group. 2016.

  92. Sharma P, Brown S, Walter G, Santra S, Moudgil B. Nanoparticles for bioimaging. Adv Colloid Interf Sci. 2006;123-126:471–85.

    Article  CAS  Google Scholar 

  93. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–68.

    Article  CAS  PubMed  Google Scholar 

  94. Chen GY, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.

    Article  CAS  PubMed  Google Scholar 

  95. Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv. 2010;7(10):1209–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng. 2014;16:347–70.

    Article  CAS  PubMed  Google Scholar 

  97. Nimesh S, Gupta N, Chandra R. Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids. J Biomed Nanotechnol. 2011;7(4):504–20.

    Article  CAS  PubMed  Google Scholar 

  98. Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale. 2014;6(12):6415–25.

    Article  CAS  PubMed  Google Scholar 

  99. Sarisozen C, Salzano G, Torchilin VP. Lipid-based siRNA delivery systems: challenges, promises and solutions along the long journey. Curr Pharm Biotechnol. 2016;17(8):728–40.

    Article  CAS  PubMed  Google Scholar 

  100. Mokhtarzadeh A, Alibakhshi A, Hashemi M, Hejazi M, Hosseini V, de la Guardia M, et al. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release. 2017;245:116–26.

    Article  CAS  PubMed  Google Scholar 

  101. Liu XQ, et al. Polymeric-micelle-based nanomedicine for siRNA delivery. Part Part Syst Charact. 2013;30(3):211–28.

    Article  CAS  Google Scholar 

  102. Conde J, et al. 15 years on siRNA delivery: beyond the state-of-the-art on inorganic nanoparticles for RNAi therapeutics. Nano Today. 2015;10(4):421–50.

    Article  CAS  Google Scholar 

  103. Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv. 2016;13(4):547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  105. Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery - going from bench to bedside. Int J Nanomedicine. 2016;11:3077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14(12):843–56.

    Article  CAS  PubMed  Google Scholar 

  107. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    Article  CAS  PubMed  Google Scholar 

  108. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31(7):653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  110. Ragelle H, Vandermeulen G, Preat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172(1):207–18.

    Article  CAS  PubMed  Google Scholar 

  111. Neuberg P, Kichler A. Recent developments in nucleic acid delivery with polyethylenimines. Adv Genet. 2014;88:263–88.

    Article  CAS  PubMed  Google Scholar 

  112. Merkel OM, Urbanics R, Bedocs P, Rozsnyay Z, Rosivall L, Toth M, et al. In vitro and in vivo complement activation and related anaphylactic effects associated with polyethylenimine and polyethylenimine-graft-poly(ethylene glycol) block copolymers. Biomaterials. 2011;32(21):4936–42.

    Article  CAS  PubMed  Google Scholar 

  113. Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts. 2011;1(1):23–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials. 2001;22(5):471–80.

    Article  CAS  PubMed  Google Scholar 

  115. Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomed (Lond). 2014;9(2):295–312.

    Article  CAS  Google Scholar 

  116. Zheng M, Librizzi D, Kılıç A, Liu Y, Renz H, Merkel OM, et al. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials. 2012;33(27):6551–8.

    Article  CAS  PubMed  Google Scholar 

  117. Jager M, et al. Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev. 2012;41(13):4755–67.

    Article  PubMed  CAS  Google Scholar 

  118. Hobel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(5):484–501.

    Article  PubMed  CAS  Google Scholar 

  119. Kozielski KL, Tzeng SY, de Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. 2014;8(4):3232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm. 2015;12(2):301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Convertine AJ, Benoit DS, Duvall CL, Hoffman AS, Stayton PS. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release. 2009;133(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  122. Gao WW, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010;7(6):1913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baljon J, et al. The efficiency of cytosolic drug delivery using pH-responsive, endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Biomater Sci. 2019.

  124. Zhou J, Patel TR, Fu M, Bertram JP, Saltzman WM. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials. 2012;33(2):583–91.

    Article  CAS  PubMed  Google Scholar 

  125. Yu MZ, Pang WH, Yang T, Wang JC, Wei L, Qiu C, et al. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur J Pharm Sci. 2016;92:39–48.

    Article  CAS  PubMed  Google Scholar 

  126. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22(6):1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ghaffari E, et al. Delivery of antisense peptide nucleic acid by gold nanoparticles for the inhibition of virus replication. Nanomed (Lond). 2019;14(14):1827–40.

    Article  CAS  Google Scholar 

  128. Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem (Int Ed Engl). 2008;47:1382–95.

    Article  CAS  Google Scholar 

  130. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.

    Article  CAS  PubMed  Google Scholar 

  131. El-Fiqi A, et al. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale. 2012;4(23):7475–88.

    Article  CAS  PubMed  Google Scholar 

  132. Wilhelm S, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.

    Article  CAS  Google Scholar 

  133. García KP, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. 2014;10(13): 2516–2529.

  134. Zhang Y-N, Poon W, Tavares AJ, McGilvray I, Chan WCW. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.

    Article  CAS  PubMed  Google Scholar 

  135. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18(3–4):301–13.

    Article  CAS  PubMed  Google Scholar 

  136. Parveen R, Shamsi TN, Fatima S. Nanoparticles-protein interaction: role in protein aggregation and clinical implications. Int J Biol Macromol. 2017;94(Pt A):386–95.

    Article  CAS  PubMed  Google Scholar 

  137. Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol. 2016;299:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vroman L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature. 1962;196:476–7.

    Article  CAS  PubMed  Google Scholar 

  139. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lazarovits J, Chen YY, Sykes EA, Chan WC. Nanoparticle-blood interactions: the implications on solid tumour targeting. Chem Commun. 2015;51(14):2756–67.

    Article  CAS  Google Scholar 

  141. Docter D, et al. The nanoparticle biomolecule corona: lessons learned - challenge accepted? Chem Soc Rev. 2015;44(17):6094–121.

    Article  CAS  PubMed  Google Scholar 

  142. Capriotti AL, et al. Analytical methods for characterizing the nanoparticle-protein Corona. Chromatographia. 2014;77(11–12):755–69.

    Article  CAS  Google Scholar 

  143. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.

    Article  CAS  PubMed  Google Scholar 

  144. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105(38):14265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Allemann E, et al. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles: evidence of complement C3 component involvement. J Biomed Mater Res. 1997;37(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  146. Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic-uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res. 1994;11(3):402–6.

    Article  CAS  PubMed  Google Scholar 

  147. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  148. Yan Y, et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano. 2013;7(12):10960–70.

    Article  CAS  PubMed  Google Scholar 

  149. Lee YK, et al. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine. 2015;10:97–112.

    PubMed  Google Scholar 

  150. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44(17):6287–305.

    Article  CAS  PubMed  Google Scholar 

  151. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, et al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir. 2012;28(25):9673–9.

    Article  CAS  PubMed  Google Scholar 

  152. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21(20):9303–7.

    Article  CAS  PubMed  Google Scholar 

  153. Nuhn L, Gietzen S, Mohr K, Fischer K, Toh K, Miyata K, et al. Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules. 2014;15(4):1526–33.

    Article  CAS  PubMed  Google Scholar 

  154. Rausch K, Reuter A, Fischer K, Schmidt M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules. 2010;11(11):2836–9.

    Article  CAS  PubMed  Google Scholar 

  155. Cukalevski R, et al. IgG and fibrinogen driven nanoparticle aggregation. Nano Res. 2015;8(8):2733–43.

    Article  CAS  Google Scholar 

  156. Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011;5(7):5478–89.

    Article  CAS  PubMed  Google Scholar 

  157. Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47(8):2651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. • Malcolm DW, et al. The effects of biological fluids on colloidal stability and siRNA delivery of a pH-responsive micellar nanoparticle delivery system. ACS Nano. 2017;12(1):187–97 This study shows serum-induced NP-siRNA aggregation significantly diminishes efficiency of siRNAdelivery by reducing uptake, pH-responsive membrane lysis activity, and NP-siRNA dissociation.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  159. Dakwar GR, Braeckmans K, Demeester J, Ceelen W, de Smedt SC, Remaut K. Disregarded effect of biological fluids in siRNA delivery: human ascites fluid severely restricts cellular uptake of nanoparticles. ACS Appl Mater Interfaces. 2015;7(43):24322–9.

    Article  CAS  PubMed  Google Scholar 

  160. Fujisaki J, Tokunaga Y, Takahashi T, Kimura S, Shimojo F, Hata T. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol. Biol Pharm Bull. 1997;20(11):1183–7.

    Article  CAS  PubMed  Google Scholar 

  161. Wang Y, Newman MR, Ackun-Farmmer M, Baranello MP, Sheu TJ, Puzas JE, et al. Fracture-targeted delivery of beta-catenin agonists via peptide-functionalized nanoparticles augments fracture healing. ACS Nano. 2017;11(9):9445–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marian Ackun-Farmmer for helpful discussions in the development and editing of the manuscript.

Funding

The National Science Foundation (NSF) DMR1206219, CBET1450987, and DGE1419118; National Institutes of Health (NIH) R01 AR064200, R01 AR056696, R01 DE018023, F31 AR076874; and New York State Stem Cell Science (NYSTEM) N11G-035 provided funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle S. W. Benoit.

Ethics declarations

Conflict of Interest

Danielle Benoit and Clyde Overby report grants from National Science Foundation, National Institutes of Health, and New York State Stem Cell Science during the conduct of the study. Benoit and Maureen Newman have a patent (“Compositions Controlled Localized Delivery of Bone Forming Therapeutic Agents.” #9,949,950.Ð’d) licensed to Taithera, and a patent (‘Anti-Fouling Semi-Random Zwitterionic Peptides.’ #2-20003) pending.

Dr. Newman reports grants from National Science Foundation during the conduct of the study and is an employee of Surrozen. Yuchen Wang is employed at Emergent Biosolutions. Dominic Malcolm is a current employee at Athersys, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malcolm, D.W., Wang, Y., Overby, C. et al. Delivery of RNAi-Based Therapeutics for Bone Regeneration. Curr Osteoporos Rep 18, 312–324 (2020). https://doi.org/10.1007/s11914-020-00587-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00587-2

Keywords

Navigation