Skip to main content

Advertisement

Log in

Targeting the Wnt signaling pathway to augment bone formation

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Recent discoveries in humans and mice have revealed that the Wnt (Wingless and Int-1) signaling pathway is responsible for a complex array of functions in maintaining bone homeostasis. The Wnt proteins are key modulators of mesenchymal lineage specification and regulate most aspects of osteoblast physiology and postnatal bone acquisition by controlling the differentiation and activity of osteoblasts and osteoclasts. Initial reports have indicated that activators of Wnt signaling are potent promoters of osteogenesis; however, systemic hyperactivation of the canonical Wnt pathway could potentially accelerate neoplastic transformation and subsequent tumor growth. Alternatively, recent investigations of natural soluble antagonists of Wnt signaling in bone suggest the possibilities of bone-specific therapies targeting the negative regulators of Wnt pathway, especially sclerostin. With this new knowledge, novel pharmacologic interventions that alter Wnt signaling are being evaluated for the management of osteoporosis. In this article, we briefly describe the Wnt signaling elements, their characterized role in bone, and summarize the current knowledge on the potential to enhance bone formation through the manipulation of Wnt signaling antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fuerer C, Nusse R, Ten Berge D: Wnt signalling in development and disease. Max Delbruck Center for Molecular Medicine meeting on Wnt signaling in development and disease. EMBO Rep 2008, 9:134–138.

    Article  PubMed  CAS  Google Scholar 

  2. Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31:99–109.

    Article  PubMed  CAS  Google Scholar 

  3. Gong Y, Slee RB, Fukai N, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513–523.

    Article  PubMed  CAS  Google Scholar 

  4. Little RD, Carulli JP, Del Mastro RG, et al.: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002, 70:11–19.

    Article  PubMed  CAS  Google Scholar 

  5. Huang H, He X: Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 2008, 20:119–125.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon MD, Nusse R: Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006, 281:22429–22433.

    Article  PubMed  CAS  Google Scholar 

  7. Bennett CN, Longo KA, Wright WS, et al.: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 2005, 102:3324–3329.

    Article  PubMed  CAS  Google Scholar 

  8. Andrade AC, Nilsson O, Barnes KM, Baron J: Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 2007, 40:1361–1369.

    Article  PubMed  CAS  Google Scholar 

  9. Rodda SJ, McMahon AP: Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006, 133:3231–3244.

    Article  PubMed  CAS  Google Scholar 

  10. Dong YF, Soung do Y, Schwarz EM, et al.: Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 2006, 208:77–86.

    Article  PubMed  CAS  Google Scholar 

  11. Bennett CN, Ouyang H, Ma YL, et al.: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 2007, 22:1924–1932.

    Article  PubMed  CAS  Google Scholar 

  12. Glass DA 2nd, Bialek P, Ahn JD, et al.: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005, 8:751–764.

    Article  PubMed  CAS  Google Scholar 

  13. Tu X, Joeng KS, Nakayama KI, et al.: Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 2007, 12:113–127.

    Article  PubMed  CAS  Google Scholar 

  14. Bergenstock MK, Partridge NC: Parathyroid hormone stimulation of noncanonical Wnt signaling in bone. Ann N Y Acad Sci 2007, 1116:354–359.

    Article  PubMed  CAS  Google Scholar 

  15. Chang J, Sonoyama W, Wang Z, et al.: Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007, 282:30938–30948.

    Article  PubMed  CAS  Google Scholar 

  16. Takada I, Suzawa M, Matsumoto K, Kato S: Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci 2007, 116:182–195.

    Article  Google Scholar 

  17. Yamaguchi TP, Bradley A, McMahon AP, Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999, 126:1211–1223.

    PubMed  CAS  Google Scholar 

  18. Almeida M, Han L, Bellido T, et al.: Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and-independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 2005, 280:41342–41351.

    Article  PubMed  CAS  Google Scholar 

  19. Mao B, Wu W, Davidson G, et al.: Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 2002, 417:664–667.

    Article  PubMed  CAS  Google Scholar 

  20. Kulkarni NH, Wei T, Kumar A, et al.: Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem 2007, 102:1504–1518.

    Article  PubMed  CAS  Google Scholar 

  21. Baron R, Rawadi G: Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007, 148:2635–2643.

    Article  PubMed  CAS  Google Scholar 

  22. Sims AM, Shephard N, Carter K, et al.: Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J Bone Miner Res 2008, 23:499–506.

    Article  PubMed  CAS  Google Scholar 

  23. Klaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008, 8:387–398.

    Article  PubMed  CAS  Google Scholar 

  24. Glinka A, Wu W, Delius H, et al.: Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998, 391:357–362.

    Article  PubMed  CAS  Google Scholar 

  25. Mao B, Wu W, Li Y, et al.: LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001, 411:321–325.

    Article  PubMed  CAS  Google Scholar 

  26. Li X, Liu P, Liu W, et al.: Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005, 37:945–952.

    Article  PubMed  CAS  Google Scholar 

  27. van der Horst G, van der Werf SM, et al.: Down-regulation of Wnt signaling by increased expression of Dickkopf-1 and-2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005, 20:1867–1877.

    Article  PubMed  Google Scholar 

  28. Li J, Sarosi I, Cattley RC, et al.: Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006, 39:754–766.

    Article  PubMed  CAS  Google Scholar 

  29. Morvan F, Boulukos K, Clement-Lacroix P, et al.: Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006, 21:934–945.

    Article  PubMed  CAS  Google Scholar 

  30. Qiang YW, Chen Y, Stephens O, et al.: Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008, 112:196–207.

    Article  PubMed  CAS  Google Scholar 

  31. Matsumoto T, Abe M: Bone destruction in multiple myeloma. Ann N Y Acad Sci 2006, 1068:319–326.

    Article  PubMed  CAS  Google Scholar 

  32. Heider U, Hofbauer LC, Zavrski I, et al.: Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochem Biophys Res Commun 2005, 338:687–693.

    Article  PubMed  CAS  Google Scholar 

  33. Oshima T, Abe M, Asano J, et al.: Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005, 106:3160–315.

    Article  PubMed  CAS  Google Scholar 

  34. Hall CL, Keller ET: The role of Wnts in bone metastases. Cancer Metastasis Rev 2006, 25:551–558.

    Article  PubMed  CAS  Google Scholar 

  35. Voorzanger-Rousselot N, Goehrig D, Journe F, et al.: Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 2007, 97:964–970.

    PubMed  CAS  Google Scholar 

  36. Hurson CJ, Butler JS, Keating DT, et al.: Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord 2007, 8:12.

    Article  PubMed  Google Scholar 

  37. Yao W, Cheng Z, Busse C, et al.: Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoidtreated mice. Arthritis Rheum 2008, 58:1674–1686.

    Article  PubMed  CAS  Google Scholar 

  38. Wang FS, Ko JY, Yeh DW, et al.: Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 2008, 149:1793–1801.

    Article  PubMed  CAS  Google Scholar 

  39. Wang FS, Ko JY, Lin CL, et al.: Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 2007, 40:485–492.

    Article  PubMed  CAS  Google Scholar 

  40. Diarra D, Stolina M, Polzer K, et al.: Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007, 13:156–163.

    Article  PubMed  CAS  Google Scholar 

  41. Yaccoby S, Ling W, Zhan F, et al.: Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109:2106–2111.

    Article  PubMed  CAS  Google Scholar 

  42. Balemans W, Ebeling M, Patel N, et al.: Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001, 10:537–543.

    Article  PubMed  CAS  Google Scholar 

  43. Irie K, Ejiri S, Sakakura Y, et al.: Matrix mineralization as a trigger for osteocyte maturation. J Histochem Cytochem 2008, 56:561–567.

    Article  PubMed  CAS  Google Scholar 

  44. Poole KE, van Bezooijen RL, Loveridge N, et al.: Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 2005, 19:1842–1844.

    PubMed  CAS  Google Scholar 

  45. Kusu N, Laurikkala J, Imanishi M, et al.: Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem 2003, 278:24113–24117.

    Article  PubMed  CAS  Google Scholar 

  46. Sutherland MK, Geoghegan JC, Yu C, et al.: Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 2004, 35:828–835.

    Article  PubMed  CAS  Google Scholar 

  47. Balemans W, Piters E, Cleiren E, et al.: The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int 2008 Jun 3 (Epub ahead of print).

  48. Semenov MV, He X: LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 2006, 281:38276–38284.

    Article  PubMed  CAS  Google Scholar 

  49. Li X, Ominsky MS, Niu QT, et al.: Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 2008, 23:860–869.

    Article  PubMed  Google Scholar 

  50. Bellido T: Downregulation of SOST/sclerostin by PTH: a novel mechanism of hormonal control of bone formation mediated by osteocytes. J Musculoskelet Neuronal Interact 2006, 6:358–359.

    PubMed  CAS  Google Scholar 

  51. Robling AG, Niziolek PJ, Baldridge LA, et al.: Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008, 283:5866–5875.

    Article  PubMed  CAS  Google Scholar 

  52. Padhi D, Stouch B, Jang G, et al.: Anti-sclerostin antibody increases markers of bone formation in healthy postmenopausal women. Abstracts of the 29th Annual Meeting of the American Society for Bone and Mineral Research. J Bone Miner Res 2007, 22(Suppl 1):S37.

    Google Scholar 

  53. Bovolenta P, Esteve P, Ruiz JM, et al.: Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008, 121(Pt 6):737–746.

    Article  PubMed  CAS  Google Scholar 

  54. Hoang B, Moos M Jr, Vukicevic S, Luyten FP: Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 1996, 271:26131–26137.

    Article  PubMed  CAS  Google Scholar 

  55. Chung YS, Baylink DJ, Srivastava AK, et al.: Effects of secreted frizzled-related protein 3 on osteoblasts in vitro. J Bone Miner Res 2004, 19:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  56. Boland GM, Perkins G, Hall DJ, Tuan RS: Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004, 93:1210–1230.

    Article  PubMed  CAS  Google Scholar 

  57. Mandal D, Srivastava A, Mahlum E, et al.: Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene 2007, 386:131–138.

    Article  PubMed  CAS  Google Scholar 

  58. Min JL, Meulenbelt I, Riyazi N, et al.: Association of the Frizzled-related protein gene with symptomatic osteoarthritis at multiple sites. Arthritis Rheum 2005, 52:1077–1080.

    Article  PubMed  CAS  Google Scholar 

  59. Lane NE, Nevitt MC, Lui LY, et al.: Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 2007, 56:3319–3325.

    Article  PubMed  CAS  Google Scholar 

  60. Bodine PV, Billiard J, Moran RA, et al.: The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 2005, 96:1212–1230.

    Article  PubMed  CAS  Google Scholar 

  61. Bodine PV, Seestaller-Wehr L, Kharode YP, et al.: Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Physiol 2007, 210:352–357.

    Article  PubMed  CAS  Google Scholar 

  62. Yao W, Cheng Z, Busse C, et al.: Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates pth bone anabolic effects [abstract]. Presented at the 30th Annual Meeting of the American Society for Bone and Mineral Research. Montreal, Quebec, Canada; September 12–16, 2008.

  63. Hausler KD, Horwood NJ, Chuman Y, et al.: Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 2004, 19:1873–1881.

    Article  PubMed  CAS  Google Scholar 

  64. Liu D, Wise GE: A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle—role of secreted frizzled-related protein-1 in osteoclastogenesis. Bone 2007, 41:266–272.

    Article  PubMed  CAS  Google Scholar 

  65. Bodine PV, Zhao W, Kharode YP, et al.: The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 2004, 18:1222–1237.

    Article  PubMed  CAS  Google Scholar 

  66. Bodine P, Stauffer B, Ponce-de-Leon H, et al.: A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein (SFRP)-1 stimulates bone formation. Abstracts of the 29th Annual Meeting of the American Society for Bone and Mineral Research. J Bone Miner Res 2007, 22(Suppl 1):S4.

    Google Scholar 

  67. Nakanishi R, Shimizu M, Mori M, et al.: Secreted frizzledrelated protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res 2006, 21:1713–1721.

    Article  PubMed  CAS  Google Scholar 

  68. Nakanishi R, Akiyama H, Kimura H, et al.: Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 2008, 23:271–277.

    Article  PubMed  CAS  Google Scholar 

  69. Berndt T, Craig TA, Bowe AE, et al.: Secreted frizzledrelated protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003, 112:785–794.

    PubMed  CAS  Google Scholar 

  70. Vaes BL, Dechering KJ, van Someren EP, et al.: Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Bone 2005, 36:803–811.

    Article  PubMed  CAS  Google Scholar 

  71. Clement-Lacroix P, Ai M, Morvan F, et al.: Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005, 102:17406–17411.

    Article  PubMed  CAS  Google Scholar 

  72. Kulkarni NH, Onyia JE, Zeng Q, et al.: Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006, 21:910–920.

    Article  PubMed  CAS  Google Scholar 

  73. Vestergaard P, Rejnmark L, Mosekilde L: Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 2005, 77:1–8.

    Article  PubMed  CAS  Google Scholar 

  74. Kugimiya F, Kawaguchi H, Ohba S, et al.: GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS ONE 2007, 2:e837.

    Article  PubMed  Google Scholar 

  75. Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al.: Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood 2007, 110:735–742.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy E. Lane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahnazari, M., Yao, W., Corr, M. et al. Targeting the Wnt signaling pathway to augment bone formation. Curr Osteoporos Rep 6, 142–148 (2008). https://doi.org/10.1007/s11914-008-0025-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-008-0025-5

Keywords

Navigation