Skip to main content

Advertisement

Log in

Progress Update in Pediatric Renal Tumors

  • Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies.

Recent Findings

Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly.

Summary

We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Explorer database: incidence - SEER research data, kidney and renal pelvis cancer SEER incidence rates by age at diagnosis, Sub (2013-2017), National Cancer Institute, DCCPS, Surveillance Research Program. https://seer.cancer.gov/explorer/application.html?site = 72&data_type = 1&graph_type = 3&compareBy = sex&chk_sex_1 = 1&chk_sex_3 = 3&chk_sex_2 = 2&race = 1&rate_type = 1&advopt_precision = 1&advopt_display = 2. Accessed 7 Aug 2020

  2. Dome JS, Fernandez CV, Mullen EA, Kalapurakal JA, Geller JI, Huff V, et al. Children’s Oncology Group’s 2013 blueprint for research: renal tumors. Pediatr Blood Cancer. 2013;60:994–1000.

  3. D’Angio GJ. The National Wilms tumor study: a 40 year perspective. Lifetime Data Anal. 2007;13:463–70.

    Article  Google Scholar 

  4. Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43:705–15.

    Article  CAS  Google Scholar 

  5. Chagtai T, Zill C, Dainese L, Wegert J, Savola S, Popov S, et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 trial: a SIOP renal tumours biology consortium study. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34:3195–203.

  6. Wright KD, Green DM, Daw NC. Late effects of treatment for Wilms tumor. Pediatr Hematol Oncol. 2009;26:407–13.

    Article  Google Scholar 

  7. Lu Y-J, Hing S, Williams R, Pinkerton R, Shipley J, Pritchard-Jones K, et al. chromosome 1q expression profiling and relapse in Wilms’ tumour. Lancet Lond Engl. 2002;360:385–6.

  8. Bown N, Cotterill SJ, Roberts P, Griffiths M, Larkins S, Hibbert S, et al. Cytogenetic abnormalities and clinical outcome in Wilms tumor: a study by the U.K. cancer cytogenetics group and the U.K. Children’s Cancer Study Group. Med Pediatr Oncol. 2002;38:11–21.

  9. Hing S, Lu YJ, Summersgill B, King-Underwood L, Nicholson J, Grundy P, et al. Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am J Pathol. 2001;158:393–8.

  10. Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K, et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol. 2006;210:49–58.

  11. Natrajan R, Little SE, Sodha N, Reis-Filho JS, Mackay A, Fenwick K, et al. Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms’ tumour. J Pathol. 2007;211:52–9.

  12. Williams RD, Hing SN, Greer BT, Whiteford CC, Wei JS, Natrajan R, et al. Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines. Genes Chromosomes Cancer. 2004;41:65–79.

  13. Huang C-C, Gadd S, Breslow N, Cutcliffe C, Sredni ST, Helenowski IB, et al. Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the Renal Tumor Committee of the Children’s Oncology Group. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:1770–8.

  14. Segers H, van den Heuvel-Eibrink MM, Williams RD, van Tinteren H, Vujanic G, Pieters R, et al. Gain of 1q is a marker of poor prognosis in Wilms’ tumors. Genes Chromosomes Cancer. 2013;52:1065–74.

  15. Gratias EJ, Jennings LJ, Anderson JR, Dome JS, Grundy P, Perlman EJ. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer. 2013;119:3887–94.

    Article  Google Scholar 

  16. Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, Anderson J, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34:3189–94.

  17. Dix DB, Fernandez CV, Chi Y-Y, et al. Augmentation of therapy for combined loss of heterozygosity 1p and 16q in favorable histology Wilms tumor: a Children’s Oncology Group AREN0532 and AREN0533 study report. J Clin Oncol Off J Am Soc Clin Oncol. 2019;37:2769–77 This reference utilizes the most current studies for FHWT to analyze the effect of augmentation of therapy for those patients with LOH 1p and 16q.

    Article  CAS  Google Scholar 

  18. Smith MA, Altekruse SF, Adamson PC, Reaman GH, Seibel NL. Declining childhood and adolescent cancer mortality. Cancer. 2014;120:2497–506.

    Article  Google Scholar 

  19. Fernandez CV, Perlman EJ, Mullen EA, et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor. Ann Surg. 2017;265:835–40 This reference utilizes the most current studies for very low-risk FHWT to analyze the effect of reducing therapy and analyzing markers for risk of relapse.

  20. Parsons LN, Mullen EA, Geller JI, Chi YY, Khanna G, Glick RD, et al. Outcome analysis of stage I epithelial-predominant favorable-histology Wilms tumors: a report from Children’s Oncology Group study AREN03B2. Cancer. 2020;126:2866–71.

  21. Fernandez CV, Mullen EA, Chi Y-Y, et al. Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children’s Oncology Group Study AREN0532. J Clin Oncol. 2018;36:254–61 This reference utilizes the most current studies for Stage III FHWT to analyze the effect of augmenting therapy.

    Article  CAS  Google Scholar 

  22. Verschuur A, Van Tinteren H, Graf N, Bergeron C, Sandstedt B, de Kraker J. Treatment of pulmonary metastases in children with stage IV nephroblastoma with risk-based use of pulmonary radiotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:3533–9.

    Article  Google Scholar 

  23. Dix DB, Seibel NL, Chi Y-Y, et al. Treatment of stage IV favorable histology Wilms tumor with lung metastases: a report from the Children’s Oncology Group AREN0533 study. J Clin Oncol. 2018;36:1564–70 This reference utilizes the most current studies for Stage IV FHWT to analyze the effect of augmenting therapy, decreasing radiation for a subset of patients and analyzing the effect of 1q gain.

    Article  CAS  Google Scholar 

  24. Ehrlich PF, Chi Y-Y, Chintagumpala MM, et al. Results of the first prospective multi-institutional treatment study in children with bilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Ann Surg. 2017;266:470–8 This reference utilizes the most current studies for bilateral Wilms to analyze the effect of augmenting therapy and utilizing nephron sparing surgery to preserve renal tissue/function.

    Article  Google Scholar 

  25. Ooms AHAG, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:5582–91.

  26. Daw NC, Chi Y-Y, Kim Y, et al. Treatment of stage I anaplastic Wilms’ tumour: a report from the Children’s Oncology Group AREN0321 study. Eur J Cancer Oxf Engl 1990. 2019;118:58–66 This reference utilizes the most current studies for AWT to analyze the effect of augmenting therapy.

  27. Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:2352–8.

  28. Fajardo RD, van den Heuvel-Eibrink MM, van Tinteren H, et al. Is radiotherapy required in first-line treatment of stage I diffuse anaplastic Wilms tumor? A report of SIOP-RTSG, AIEOP, JWiTS, and UKCCSG. Pediatr Blood Cancer. 2020;67:e28039.

    Article  Google Scholar 

  29. Daw NC, Chi Y-Y, Kalapurakal JA, et al. Activity of vincristine and irinotecan in diffuse anaplastic Wilms tumor and therapy outcomes of stage II to IV disease: results of the Children’s Oncology Group AREN0321 study. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:1558–68 This reference utilizes the most current studies for Stage II-IV DAWT to analyze the effect of augmenting therapy.

    Article  CAS  Google Scholar 

  30. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell. 2015;27:286–97.

  31. Wegert J, Zauter L, Appenzeller S, Otto C, Bausenwein S, Vokuhl C, et al. High-risk blastemal Wilms tumor can be modeled by 3D spheroid cultures in vitro. Oncogene. 2020;39:849–61.

  32. Murphy AJ, Chen X, Pinto EM, Williams JS, Clay MR, Pounds SB, et al. Forty-five patient-derived xenografts capture the clinical and biological heterogeneity of Wilms tumor. Nat Commun. 2019;10:5806.

  33. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol OncolJ Hematol Oncol. 2017;10:101. https://doi.org/10.1186/s13045-017-0471-6.

  34. Hingorani P, Zhang W, Kurmasheva RT, Zhang Z, Wang Y Preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS- 8201a), a HER2 antibody drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC). 1

  35. Kurmasheva RT, Kurmashev D, Reynolds CP, Kang M, Wu J, Houghton PJ, et al. Initial testing (stage 1) of M6620 (formerly VX-970), a novel ATR inhibitor, alone and combined with cisplatin and melphalan, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2018;65. https://doi.org/10.1002/pbc.26825.

  36. Cajaiba MM, Dyer LM, Geller JI, Jennings LJ, George D, Kirschmann D, et al. The classification of pediatric and young adult renal cell carcinomas registered on the children’s oncology group (COG) protocol AREN03B2 after focused genetic testing. Cancer. 2018;124:3381–9.

  37. Geller JI, Cost NG, Chi Y-Y, et al (2020) A prospective study of pediatric and adolescent renal cell carcinoma: a report from the Children’s Oncology Group AREN0321 study. Cancer. 2020;126:5156–64. https://doi.org/10.1002/cncr.33173This paper summarizes the first prospective study to further understand the landscape of pediatric RCC

  38. Malouf GG, Camparo P, Oudard S, Schleiermacher G, Theodore C, Rustine A, et al. Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. Ann Oncol Off J Eur Soc Med Oncol. 2010;21:1834–8.

  39. Tannir NM, Jonasch E, Albiges L, Altinmakas E, Ng CS, Matin SF, et al. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): a randomized multicenter phase 2 trial. Eur Urol. 2016;69:866–74.

  40. Numakura K, Tsuchiya N, Yuasa T, Saito M, Obara T, Tsuruta H, et al. A case study of metastatic Xp11.2 translocation renal cell carcinoma effectively treated with sunitinib. Int J Clin Oncol. 2011;16:577–80.

  41. Pwint TP, Macaulay V, Roberts ISD, Sullivan M, Protheroe A. An adult Xp11.2 translocation renal carcinoma showing response to treatment with sunitinib. Urol Oncol. 2011;29:821–4.

    Article  CAS  Google Scholar 

  42. Chowdhury T, Prichard-Jones K, Sebire NJ, Bier N, Cherian A, Sullivan MO, et al. Persistent complete response after single-agent sunitinib treatment in a case of TFE translocation positive relapsed metastatic pediatric renal cell carcinoma. J Pediatr Hematol Oncol. 2013;35:e1–3.

  43. Ambalavanan M, Geller JI. Treatment of advanced pediatric renal cell carcinoma. Pediatr Blood Cancer. 2019;66:e27766.

    Article  Google Scholar 

  44. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet Lond Engl. 2011;378:1931–9.

  45. Garje R, An J, Greco A, Vaddepally RK, Zakharia Y. The future of immunotherapy-based combination therapy in metastatic renal cell carcinoma. Cancers. 2020;12. https://doi.org/10.3390/cancers12010143.

  46. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67:507–24.

    Article  Google Scholar 

  47. Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41:114–21.

  48. McDermott DF, Drake CG, Sznol M, et al. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:2013–20.

    Article  CAS  Google Scholar 

  49. Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1430–7.

    Article  CAS  Google Scholar 

  50. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1103–15.

  51. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.

  52. Hong AL, Tseng Y-Y, Wala JA, Kim WJ, Kynnap BD, Doshi MB, et al. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife. 2019;8. https://doi.org/10.7554/eLife.44161.

  53. Carugo A, Minelli R, Sapio L, et al. p53 Is a master regulator of proteostasis in SMARCB1-deficient malignant rhabdoid tumors. Cancer Cell. 2019;35:204–220.e9.

    Article  CAS  Google Scholar 

  54. Gooskens SLM, Furtwängler R, Vujanic GM, Dome JS, Graf N, van den Heuvel-Eibrink MM (2012) Clear cell sarcoma of the kidney: a review. Eur J Cancer Oxf Engl 1990 48:2219–2226 This reference describes the UMBRELLA protocol, an international collaborative protocol for the diagnosis, treatment and follow up of childhood renal tumors. This part of the protocol outlines recent studies and plans for CCSK

  55. Argani P, Perlman EJ, Breslow NE, Browning NG, Green DM, D’Angio GJ, et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2000;24:4–18.

  56. Aw SJ, Chang KTE. Clear Cell Sarcoma of the Kidney. Arch Pathol Lab Med. 2019;143:1022–6.

    Article  CAS  Google Scholar 

  57. Wong MK, Ng CCY, Kuick CH, Aw SJ, Rajasegaran V, Lim JQ, et al. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR–CCNB3 gene fusion. Histopathology. 2018;72:320–9.

  58. Gooskens SL, Graf N, Furtwängler R, et al. Rationale for the treatment of children with CCSK in the UMBRELLA SIOP–RTSG 2016 protocol. Nat Rev Urol. 2018;15:309–19.

    Article  Google Scholar 

  59. Krämer KF, Moreno N, Frühwald MC, Kerl K. BRD9 inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in rhabdoid tumors. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18071537.

  60. Hohmann AF, Vakoc CR. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet TIG. 2014;30:356–63.

    Article  CAS  Google Scholar 

  61. Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

  62. Roberts CWM, Orkin SH. The SWI/SNF complex — chromatin and cancer. Nat Rev Cancer. 2004;4:133–42.

    Article  CAS  Google Scholar 

  63. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 2012;122:2983–8.

  64. Mora-Blanco EL, Mishina Y, Tillman EJ, Cho Y-J, Thom CS, Pomeroy SL, et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene. 2014;33:933–8.

  65. Wang X, Haswell JR, Roberts CWM. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights. Clin Cancer Res. 2014;20:21–7.

    Article  Google Scholar 

  66. Tomlinson GE, Breslow NE, Dome J, Guthrie KA, Norkool P, Li S, et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:7641–5.

  67. Mills CC, Kolb EA, Sampson VB. Review: recent advances of cell cycle inhibitor therapies for pediatric cancer. Cancer Res. 2017;77:6489–98.

    Article  CAS  Google Scholar 

  68. Kurmasheva RT, Sammons M, Favours E, Wu J, Kurmashev D, Cosmopoulos K, et al. Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2017;64:e26218. https://doi.org/10.1002/pbc.26218.

  69. Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, et al. Initial testing of the Aurora kinase A inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr Blood Cancer. 2010;55:26–34.

  70. Howard TP, Arnoff TE, Song MR, Giacomelli AO, Wang X, Hong AL, et al. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. Cancer Res. 2019;79:2404–14.

  71. Howard TP, Oberlick EM, Rees MG, Arnoff TE, Pham MT, Brenan L, et al. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:4995–5006. https://doi.org/10.1158/1078-0432.CCR-19-2717.

  72. Helming KC, Wang X, Roberts CWM. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 2014;26:309–17.

    Article  CAS  Google Scholar 

  73. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013;110:7922–7.

  74. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  Google Scholar 

  75. Chi S, Fouladi M, Shukla N, et al. Abstract A175: Phase 1 study of the EZH2 inhibitor, tazemetostat, in children with relapsed or refractory INI1-negative tumors including rhabdoid tumors, epithelioid sarcoma, chordoma, and synovial sarcoma. Mol Cancer Ther. 2018;17:A175.

    Article  Google Scholar 

  76. Stacchiotti S, Blay J-Y, Jones RL, et al. A phase II, multicenter study of the EZH2 inhibitor tazemetostat in adults (INI1-negative tumors cohort) (NCT02601950). Ann Oncol. 2018;29:viii580.

    Article  Google Scholar 

  77. Anderson J, Gibson S, Sebire NJ. Expression of ETV6-NTRK in classical, cellular and mixed subtypes of congenital mesoblastic nephroma. Histopathology. 2006;48:748–53.

    Article  CAS  Google Scholar 

  78. Gooskens SL, Houwing ME, Vujanic GM, Dome JS, Diertens T, Coulomb-l’Herminé A, et al. Congenital mesoblastic nephroma 50 years after its recognition: a narrative review. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.26437.

  79. Lei L, Stohr BA, Berry S, Lockwood CM, Davis JL, Rudzinski ER, et al. Recurrent EGFR alterations in NTRK3 fusion negative congenital mesoblastic nephroma. Pract Lab Med. 2020;21:e00164.

  80. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378:731–9.

    Article  CAS  Google Scholar 

  81. Halalsheh H, McCarville MB, Neel M, Reynolds M, Cox MC, Pappo AS. Dramatic bone remodeling following larotrectinib administration for bone metastasis in a patient with TRK fusion congenital mesoblastic nephroma. Pediatr Blood Cancer. 2018;65:e27271.

    Article  Google Scholar 

  82. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma. N Engl J Med. 2015;373:1814–23.

  83. Tasian SK, Teachey DT, Rheingold SR. Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front Oncol. 2014;4:108.

    PubMed  PubMed Central  Google Scholar 

  84. Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther. 2009;8:1–9.

    Article  CAS  Google Scholar 

  85. McCubrey JA, Rakus D, Gizak A, et al. Effects of mutations in Wnt/β-catenin, hedgehog, notch and PI3K pathways on GSK-3 activity-diverse effects on cell growth, metabolism and cancer. Biochim Biophys Acta. 2016;1863:2942–76.

    Article  CAS  Google Scholar 

  86. Prossomariti A, Piazzi G, Alquati C, Ricciardiello L. Are Wnt/β-catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer? Cell Mol Gastroenterol Hepatol. 2020;10:491–506.

    Article  Google Scholar 

  87. Patnaik A, Appleman LJ, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, et al. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol Off J Eur Soc Med Oncol. 2016;27:1928–40.

  88. Coyne GO, Yap TA, Moore N, et al. Abstract B105: phase IB combination study of copanlisib and nivolumab in advanced solid tumors and lymphomas. Mol Cancer Ther. 2019;18:B105–5.

  89. Morschhauser F, Machiels J-P, Salles G, Rottey S, Rule SAJ, Cunningham D, et al. On-target pharmacodynamic activity of the PI3K inhibitor copanlisib in paired biopsies from patients with malignant lymphoma and advanced solid tumors. Mol Cancer Ther. 2020;19:468–78.

  90. Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 2010;70:10310–20.

    Article  CAS  Google Scholar 

  91. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

  92. Liao H, Liu XJ, Blank JL, Bouck DC, Bernard H, Garcia K, et al. Quantitative proteomic analysis of cellular protein modulation upon inhibition of the NEDD8-activating enzyme by MLN4924. Mol Cell Proteomics MCP. 2011;10:M111.009183. https://doi.org/10.1074/mcp.M111.009183.

  93. Shah JJ, Jakubowiak AJ, O’Connor OA, et al. Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:34–43.

    Article  CAS  Google Scholar 

  94. Swords RT, Erba HP, DeAngelo DJ, et al. Pevonedistat (MLN4924), a First-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol. 2015;169:534–43.

    Article  CAS  Google Scholar 

  95. Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, et al. Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:847–57.

  96. Smith MA, Maris JM, Gorlick R, Kolb EA, Lock R, Carol H, et al. Initial testing of the investigational NEDD8 activating enzyme inhibitor MLN4924 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;59:246–53. https://doi.org/10.1002/pbc.23357.

  97. Traore T, Mihollen M, Garnsey J, Berger A, Manfredi M, Cosmopolous K, et al. Antitumor activity of MLN4924, an investigational inhibitor of NEDD8-activating enzyme (NAE), in preclinical models of melanoma. J Clin Oncol. 2011;29:8594–4.

  98. Garcia K, Blank JL, Bouck DC, Liu XJ, Sappal DS, Hather G, et al. Nedd8-activating enzyme inhibitor MLN4924 provides synergy with mitomycin C through interactions with ATR, BRCA1/BRCA2, and chromatin dynamics pathways. Mol Cancer Ther. 2014;13:1625–35.

  99. Foster J, Muscal J, et al. Phase 1 study of pevonedistat (MLN4924) in combination with temozolomide (TMZ) and irinotecan (IRN) in pediatric patients with recurrent or refractory solid tumors (ADVL1615). J Clin Oncol. 2019;37(15)e21521.

  100. Parsons D, Janeway K, et al. Identification of targetable molecular alterations in the NCI-COG Pediatric MATCH trial. J Clin Oncol. 2019;37(15)10011. This reference describes current outcomes of the NCI-COG Pediatric MATCH that identifies genomic alterations in relapsed/refractory childhood cancers regardless of tumor type and, if an actionable target is identified, recommends treatment with an investigational new drug

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Hong.

Ethics declarations

Conflict of Interest

None of the authors has any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, J., Sutton, K.S. & Hong, A.L. Progress Update in Pediatric Renal Tumors. Curr Oncol Rep 23, 33 (2021). https://doi.org/10.1007/s11912-021-01016-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01016-y

Keywords

Navigation