Skip to main content

Advertisement

Log in

Combination Immunotherapy in Non-small Cell Lung Cancer

  • Lung Cancer (H Borghaei, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Checkpoint blockade has changed the treatment landscape in non-small cell lung cancer (NSCLC), but single-agent approaches are effective for only a select subset of patients. Here, we will review the evidence for combination immunotherapies in NSCLC and the clinical data evaluating the efficacy of this approach.

Recent Findings

Clinical trials evaluating combination PD-1 and CTLA-4 blockade as well as PD-1 in combination with agents targeting IDO1, B7-H3, VEGF, and EGFR show promising results. Additional studies targeting other immune pathways like TIGIT, LAG-3, and cellular therapies are ongoing.

Summary

Combination immunotherapy has the potential to improve outcomes in NSCLC. Data from early clinical trials is promising and reveals that these agents can be administered together safely without a significant increase in toxicity. Further studies are needed to evaluate their long-term safety and efficacy and to determine appropriate patient selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82. https://doi.org/10.1111/j.1600-065X.2008.00662.x.

    Article  PubMed  CAS  Google Scholar 

  2. •• Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. https://doi.org/10.1056/NEJMoa1507643. This is the first trial to show an OS benefit for anti-PD-1 therapy compared to chemotherapy in second-line non-squamous NSCLC therapy. Patients treated with nivolumab had a mOS of 12.2 months compared to 9.4 months in patients treated with docetaxel. There was also an ORR advantage to nivolumab (19 vs. 12%).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. •• Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New Engl J Med. 2015;373(2):123–35. https://doi.org/10.1056/NEJMoa1504627. This trial showed both an OS and PFS benefit to nivolumab over chemotherapy in squamous NSCLC (mOS 9.2 vs. 6 months). There was also a ORR advantage to nivolumab over docetaxel (20 vs. 9%).

    Article  PubMed  CAS  Google Scholar 

  4. •• Rittmeyer A, Barlesi F, Waterkamp D. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial (vol 389, pg 255, 2016). Lancet. 2017(10077):389, E5–E. This trial showed a OS benefit to atezolizumab compared to docetaxel in NSCLC, regardless of PD-L1 status and squamous or non-squamous histology in the second-line setting (mOS 13.8 vs. 9.6 months). This is the first trial to report results of PD-L1-directed therapy.

  5. •• Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7. This is the first trial to show an overall survival advantage to treatment with pembrolizumab in the second-line setting over chemotherapy in NSCLC.

    Article  PubMed  CAS  Google Scholar 

  6. •• Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. https://doi.org/10.1056/NEJMoa1501824. This trial validated PD-L1 ≥ 50% as a predictor of response to pembrolizumab.

    Article  PubMed  Google Scholar 

  7. •• Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMoa1606774. This was the first trial to show an OS and PFS benefit to anti-PD-1 therapy in first-line treatment of NSCLC patients (mPFS 10.3 vs. 6 months). Importantly, this trial was limited to patients with PD-L1 expression of ≥ 50%.

    Article  PubMed  CAS  Google Scholar 

  8. • Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. New Engl J Med. 2017;376(25):2415–26. https://doi.org/10.1056/NEJMoa1613493. Unlike pembrolizumab in the first-line setting, nivolumab did not have a PFS or OS advantage compared to chemotherapy.

    Article  PubMed  CAS  Google Scholar 

  9. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. https://doi.org/10.1056/NEJMc1509660.

    Article  PubMed  Google Scholar 

  10. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56. https://doi.org/10.1056/NEJMoa1709684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–508. https://doi.org/10.1016/S1470-2045(16)30498-3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol-Canc. 2016;39(1):98–106. https://doi.org/10.1097/Coc.0000000000000239.

    Article  CAS  Google Scholar 

  13. Antonia SJ, Gettinger S, Goldman J, Chow LQ, Juergens R, Borghaei H, et al. Safety and efficacy of first-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in non-small cell lung cancer (NSCLC). Int J Radiat Oncol. 2014;90:S32–S3.

    Article  Google Scholar 

  14. • Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41. https://doi.org/10.1016/S1470-2045(16)30624-6. This is the first published combination IO trial in NSCLC to show promising efficacy data.

    Article  PubMed  CAS  Google Scholar 

  15. Hellmann MD, Rizvi N, Gettinger SN, Goldman J, Chow LQ, Juergens R, et al. Safety and efficacy of first-line nivolumab (NIVO) and ipilimumab (IPI) in non-small cell lung cancer (NSCLC). Eur J Cancer. 2015;51:S632–S3.

    Article  Google Scholar 

  16. NCT02453282. Phase III open label first line therapy study of MEDI 4736 [Durvalumab] with or without tremelimumab versus SOC in non small-cell lung cancer (NSCLC). www.clinicaltrials.gov. Accessed 21 Dec 2017.

  17. Gubens MA, Sequist LV, Stevenson J, Powell SF, Villaruz LC, Gadgeel SM, et al. Phase I/II study of pembrolizumab (pembro) plus ipilimumab (ipi) as second-line therapy for NSCLC: KEYNOTE-021 cohorts D and H. J Clin Oncol. 2016;34(15) https://doi.org/10.1200/JCO.2016.34.15_suppl.9027.

  18. Herbst RS, Gandara DR, Hirsch FR, Redman MW, LeBlanc M, Mack PC, et al. Lung master protocol (lung-MAP)—a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res. 2015;21(7):1514–24. https://doi.org/10.1158/1078-0432.Ccr-13-3473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gangadhar TC, Schneider BJ, Bauer TM, Wasser JS, Spira AI, Patel SP et al. Efficacy and safety of epacadostat plus pembrolizumab treatment of NSCLC: preliminary phase I/II results of ECHO-202/KEYNOTE-037. J Clin Oncol. 2017;35. doi:https://doi.org/10.1200/JCO.2017.35.15_suppl.9014.

  20. Perez RP, Riese MJ, Lewis KD, Saleh MN, Daud A, Berlin J et al. Epacadostat plus nivolumab in patients with advanced solid tumors: preliminary phase I/II results of ECHO-204. J Clin Oncol. 2017; 35. doi:https://doi.org/10.1200/JCO.2017.35.15_suppl.3003.

  21. Burris HA, Gordon MS, Hellmann MD, LoRusso P, Emens LA, Hodi FS, et al. A phase Ib dose escalation study of combined inhibition of IDO1 (GDC-0919) and PD-L1 (atezolizumab) in patients (pts) with locally advanced or metastatic solid tumors. J Clin Oncol. 2017;35 https://doi.org/10.1200/JCO.2017.35.15_suppl.105.

  22. Herbst RS, Martin-Liberal J, Calvo E, Isambert N, Bendell JC, Cassier P, et al. Interim safety and clinical activity in patients with advanced NSCLC from a multi-cohort phase 1 study of ramucirumab (R) plus pembrolizumab (P). Ann Oncol. 2016;27 https://doi.org/10.1093/annonc/mdw435.34.

  23. Taylor M, Dutcus CE, Schmidt E, Bagulho T, Li D, Shumaker R, Rasco D A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients with selected solid tumors. Ann Oncol 2016; 27. doi:https://doi.org/10.1093/annonc/mdw373.4.

  24. Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K, et al. 136O: osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J Thorac Oncol. 2016;11(4 Suppl):S115. https://doi.org/10.1016/S1556-0864(16)30246-5.

    Article  Google Scholar 

  25. Gettinger S, Chow LQ, Borghaei H, Shen Y, Harbinson C, Chen AC, et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced non-small cell lung cancer (NSCLC). Int J Radiat Oncol. 2014;90(5S):S34–S5. https://doi.org/10.1016/j.ijrobp.2014.08.210.

    Article  Google Scholar 

  26. NCT02542293. Study of 1st line therapy study of MEDI4736 with tremelimumab versus SoC in non small-cell lung cancer (NSCLC) (NEPTUNE). www.clinicaltrials.gov. Accessed 21 Dec 2017.

  27. Bahary N, Garrido-Laguna I, Cinar P, O'Rourke MA, Somer BG, Nyak-Kapoor A, et al. Phase 2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. J Clin Oncol. 2016;34(15):452. https://doi.org/10.1200/JCO.2016.34.15_suppl.3020.

    Article  Google Scholar 

  28. Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer. 2017;76:167–82. https://doi.org/10.1016/j.ejca.2017.01.011.

    Article  PubMed  CAS  Google Scholar 

  29. Hamid O, Gajewski TF, Frankel AE, Bauer TM, Olszanski AJ, Luke JJ, et al. Epacadostat plus pembrolizumab in patients with advanced melanoma: phase 1 and 2 efficacy and safety results from ECHO-202/KEYNOTE-037. Ann Oncol. 2017:28.

  30. Epacadostat shows value in two SCCHN trials. AACR, Cancer Discovery. 2017. http://cancerdiscovery.aacrjournals.org/content/early/2017/07/30/2159-8290.CD-NB2017-100. Accessed 10 Jan 2018 2018

  31. Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, et al. Structure and T cell inhibition properties of B7 family member, B7-H3. Structure. 2013;21(5):707–17. https://doi.org/10.1016/j.str.2013.03.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen C, Shen Y, Qu QX, Chen XQ, Zhang XG, Huang JA. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp Cell Res. 2013;319(1):96–102. https://doi.org/10.1016/j.yexcr.2012.09.006.

    Article  PubMed  CAS  Google Scholar 

  34. Powderly J, Cote G, Flaherty K, Szmulewitz RZ, Ribas A, Weber J, et al. Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculatur expresses B7-H3. J Immunother Cancer. 2015;3(Suppl 2):O8.

    Article  PubMed Central  Google Scholar 

  35. Loo D, Scribner JA, Son T, Hooley J, Notating T, Chiechi M, et al. Anti-B7-H3 antibody-drug conjugates as potential therapeutics for solid cancer. Cancer Res. 2016;76:1201. https://doi.org/10.1158/1538-7445.Am2016-1201.

    Article  Google Scholar 

  36. Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol. 2009;182(11):6659–69. https://doi.org/10.4049/jimmunol.0804211.

    Article  PubMed  CAS  Google Scholar 

  37. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27. https://doi.org/10.1158/0008-5472.Can-11-1620.

    Article  PubMed  CAS  Google Scholar 

  38. Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 2017;38(1):20–8. https://doi.org/10.1016/j.it.2016.10.002.

    Article  PubMed  CAS  Google Scholar 

  39. Zeltsman M, Dozier J, McGee E, Ngai D, Adusumilli PS. In-depth review: chimeric antigen receptor t cells-based therapies CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl Res. 2017;187:1–10. https://doi.org/10.1016/j.trsl.2017.04.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Maude SL, Hucks GE, Self AE, Talekar MK, Teachey DT, Baniewicz D, et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J Clin Oncol. 2017;35 https://doi.org/10.1200/JCO.2017.35.15_suppl.103.

  41. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.

    PubMed  CAS  Google Scholar 

  42. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73(2):539–49. https://doi.org/10.1158/0008-5472.Can-12-2325.

    Article  PubMed  CAS  Google Scholar 

  43. Ott PA, Hodi FS, Buchbinder EI. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front Oncol. 2015;5 https://doi.org/10.3389/fonc.2015.00202.

  44. Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol. 2011;344:129–48. https://doi.org/10.1007/82_2010_95.

    Article  CAS  Google Scholar 

  45. Shrimali RK, Yu ZY, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171–80. https://doi.org/10.1158/0008-5472.Can-10-0153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Tu GH, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF—secreting cancer immunotherapy. Clin Cancer Res. 2006;12(22):6808–16. https://doi.org/10.1158/1078-0432.Ccr-06-1558.

    Article  PubMed  CAS  Google Scholar 

  47. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T. Bevacizumab plus ipilimumab in patients with metastatic melanoma (vol 2, pg 632, 2014). Cancer Immunol Res. 2014;2(9):923. https://doi.org/10.1158/2326-6066.Cir-14-0141.

    Article  Google Scholar 

  48. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. https://doi.org/10.1158/1078-0432.CCR-12-1630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gibbons DL, Chow LQ, Kim DW, Kim SW, Yeh T, Song X, et al. 57O efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naive patients (pts) with EGFR mutant NSCLC. J Thorac Oncol. 2016;11(4 Suppl):S79. https://doi.org/10.1016/S1556-0864(16)30171-X.

    Article  Google Scholar 

  50. Besse B, Garrido P, Puente J, Cortot A, Olmedo ME, Perol M, et al. Efficacy and safety of necitumumab and pembrolizumab combination therapy in stage IV nonsquamous non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12(1):S397–S.

    Article  Google Scholar 

  51. Besse B, Lopez PG, Puente J, Cortot A, Garcia MEO, Perol M, et al. Efficacy and safety of necitumumab and pembrolizumab combination therapy in patients with stage IV non-small cell lung cancer (NSCLC). Ann Oncol. 2017;28

  52. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598–608. https://doi.org/10.1158/1535-7163.MCT-17-0386.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Mok TSK, Gadgeel S, Kim ES, Velcheti V, Hu S, Riehl T, et al. Blood first line ready screening trial (B-F1RST) and blood first assay screening trial (BFAST) enable clinical development of novel blood-based biomarker assays for tumor mutational burden (TMB) and somatic mutations in 1L advanced or metastatic. Ann Oncol. 2017;28

  54. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40. https://doi.org/10.1172/JCI91190.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Aggarwal.

Ethics declarations

Conflict of Interest

Melina E. Marmarelis and Charu Aggarwal declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmarelis, M.E., Aggarwal, C. Combination Immunotherapy in Non-small Cell Lung Cancer. Curr Oncol Rep 20, 55 (2018). https://doi.org/10.1007/s11912-018-0697-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0697-7

Keywords

Navigation