Skip to main content

Advertisement

Log in

Tumor Profiling: Development of Prognostic and Predictive Factors to Guide Brain Tumor Treatment

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Primary brain tumors are a heterogeneous group of malignancies with highly variable outcomes, and diagnosis is largely based on the histological appearance of the tumors. However, the diversity of primary brain tumors has made prognostic determinations based purely on clinicopathologic variables difficult. There is an increasing body of data suggesting a significant amount of molecular diversity accounts for the heterogeneity of clinical observations, such as response to treatment and time to progression. The last decade has witnessed an explosive advance in our knowledge of the molecular genetics of brain tumors, due in large part to the availability of high-throughput profiling techniques and to the completion of the human genome sequencing project. The large amount of data generated by these efforts has enabled the identification of prognostic and predictive factors and helping to identify pathways which are driving tumor growth. Identification of biomarkers will enable better patient stratification and individualization of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Romond EH, Perez EA, Bryant J et al: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005, 353(16):1673–1684.

    Article  CAS  PubMed  Google Scholar 

  2. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467–470.

    Article  CAS  PubMed  Google Scholar 

  3. Bammler T, Beyer RP, Bhattacharya S et al: Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005, 2(5):351–356.

    Article  PubMed  Google Scholar 

  4. Pease AC, Solas D, Sullivan EJ et al: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 1994, 91(11):5022–5026.

    Article  CAS  PubMed  Google Scholar 

  5. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863–14868.

    Article  CAS  PubMed  Google Scholar 

  6. Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006, 7(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  7. Alizadeh AA, Eisen MB, Davis RE et al: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403(6769):503–511.

    Article  CAS  PubMed  Google Scholar 

  8. Baker J: Genomic Health, Inc. Pharmacogenomics 2007, 8(4):397–399.

    Article  CAS  PubMed  Google Scholar 

  9. Glas AM, Floore A, Delahaye LJ et al: Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006, 7:278.

    Article  PubMed  Google Scholar 

  10. Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet 2008, 24(3):133–141.

    CAS  PubMed  Google Scholar 

  11. Mardis ER: Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008, 9:387–402.

    Article  CAS  PubMed  Google Scholar 

  12. Chari R, Coe BP, Wedseltoft C et al: SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics 2008, 9:422.

    Article  PubMed  Google Scholar 

  13. Fuller GN, Rhee CH, Hess KR et al: Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 1999, 59(17):4228–4232.

    CAS  PubMed  Google Scholar 

  14. Caskey LS, Fuller GN, Bruner JM et al: Toward a molecular classification of the gliomas: histopathology, molecular genetics, and gene expression profiling. Histol Histopathol 2000, 15(3):971–981.

    CAS  PubMed  Google Scholar 

  15. Huang H, Colella S, Kurrer M et al: Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res 2000, 60(24):6868–6874.

    CAS  PubMed  Google Scholar 

  16. Sallinen SL, Sallinen PK, Haapasalo HK et al: Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 2000, 60(23):6617–6622.

    CAS  PubMed  Google Scholar 

  17. Chakravarti A, Delaney MA, Noll E et al: Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res 2001, 7(8):2387–2395.

    CAS  PubMed  Google Scholar 

  18. Somasundaram K, Reddy SP, Vinnakota K et al: Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005, 24(47):7073–7083.

    Article  CAS  PubMed  Google Scholar 

  19. Raza SM, Fuller GN, Rhee CH et al: Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 2004, 10(1 Pt 1):212–221.

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho LH, Smirnov I, Baia GS et al: Molecular signatures define two main classes of meningiomas. Mol Cancer 2007, 6:64.

    Article  PubMed  Google Scholar 

  21. Aarhus M, Bruland O, Bredholt G et al: Microarray analysis reveals down-regulation of the tumour suppressor gene WWOX and up-regulation of the oncogene TYMS in intracranial sporadic meningiomas. J Neurooncol 2008, 88(3):251–259.

    Article  CAS  PubMed  Google Scholar 

  22. Goutagny S, Yang HW, Zucman-Rossi J et al: Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res 2010, 16(16):4155–4164.

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald TJ, Brown KM, LaFleur B et al: Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 2001, 29(2):143–152.

    Article  CAS  PubMed  Google Scholar 

  24. Pomeroy SL, Tamayo P, Gaasenbeek M et al: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415(6870):436–442.

    Article  CAS  PubMed  Google Scholar 

  25. Park PC, Taylor MD, Mainprize TG et al: Transcriptional profiling of medulloblastoma in children. J Neurosurg 2003, 99(3):534–541.

    Article  PubMed  Google Scholar 

  26. Neben K, Korshunov A, Benner A et al: Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004, 64(9):3103–3111.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson MC, Fuller C, Hogg TL et al: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24(12):1924–1931.

    Article  CAS  PubMed  Google Scholar 

  28. Korshunov A, Neben K, Wrobel G et al: Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 2003, 163(5):1721–1727.

    CAS  PubMed  Google Scholar 

  29. Lau CC: Genomic profiling in pediatric brain tumors. Cancer J 2005, 11(4):283–293.

    Article  CAS  PubMed  Google Scholar 

  30. Suarez-Merino B, Hubank M, Revesz T et al: Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 2005, 7(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor MD, Poppleton H, Fuller C et al: Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005, 8(4):323–335.

    Article  CAS  PubMed  Google Scholar 

  32. Gilbertson RJ: Brain tumors provide new clues to the source of cancer stem cells: does oncology recapitulate ontogeny? Cell Cycle 2006, 5(2):135–137.

    Article  CAS  PubMed  Google Scholar 

  33. Modena P, Lualdi E, Facchinetti F et al: Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 2006, 24(33):5223–5233.

    Article  CAS  PubMed  Google Scholar 

  34. Sowar K, Straessle J, Donson AM et al: Predicting which children are at risk for ependymoma relapse. J Neurooncol 2006, 78(1):41–46.

    Article  PubMed  Google Scholar 

  35. Lukashova-v Zangen I, Kneitz S, Monoranu CM et al: Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol 2007, 113(3):325–337.

    Article  PubMed  Google Scholar 

  36. de Bont JM, Kros JM, Passier MM et al: Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol 2008, 10(5):648–660.

    Article  PubMed  Google Scholar 

  37. Johnson RA, Wright KD, Poppleton H et al: Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 2010, 466(7306):632–636.

    Article  CAS  PubMed  Google Scholar 

  38. Rickman DS, Bobek MP, Misek DE et al: Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 2001, 61(18):6885–6891.

    CAS  PubMed  Google Scholar 

  39. Dai B, Kang SH, Gong W et al: Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 2007, 26(42):6212–6219.

    Article  CAS  PubMed  Google Scholar 

  40. Liu M, Dai B, Kang SH et al: FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 2006, 66(7):3593–3602.

    Article  CAS  PubMed  Google Scholar 

  41. Teh MT, Wong ST, Neill GW et al: FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 2002, 62(16):4773–4780.

    CAS  PubMed  Google Scholar 

  42. Cheung HC, Baggerly KA, Tsavachidis S et al: Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genomics 2008, 9:216.

    Article  PubMed  Google Scholar 

  43. French PJ, Peeters J, Horsman S et al: Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. Cancer Res 2007, 67(12):5635–5642.

    Article  CAS  PubMed  Google Scholar 

  44. Tanwar MK, Gilbert MR, Holland EC: Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 2002, 62(15):4364–4368.

    CAS  PubMed  Google Scholar 

  45. Khatua S, Peterson KM, Brown KM et al: Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 2003, 63(8):1865–1870.

    CAS  PubMed  Google Scholar 

  46. Liang Y, Diehn M, Watson N et al: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 2005, 102(16):5814–5819.

    Article  CAS  PubMed  Google Scholar 

  47. Nigro JM, Misra A, Zhang L et al: Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res 2005, 65(5):1678–1686.

    Article  CAS  PubMed  Google Scholar 

  48. Liu F, Park PJ, Lai W et al: A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 2006, 66(22):10815–10823.

    Article  CAS  PubMed  Google Scholar 

  49. Faury D, Nantel A, Dunn SE et al: Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 2007, 25(10):1196–1208.

    Article  CAS  PubMed  Google Scholar 

  50. McDonald KL, O’Sullivan MG, Parkinson JF et al: IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J Neuropathol Exp Neurol 2007, 66(5):405–417.

    Article  CAS  PubMed  Google Scholar 

  51. Reddy SP, Britto R, Vinnakota K et al: Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 2008, 14(10):2978–2987.

    Article  CAS  PubMed  Google Scholar 

  52. Ruano Y, Mollejo M, Camacho FI et al: Identification of survival-related genes of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma multiforme. Cancer 2008, 112(7):1575–1584.

    Article  CAS  PubMed  Google Scholar 

  53. Scrideli CA, Carlotti CG, Jr., Okamoto OK et al: Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 2008, 88(3):281–291.

    Article  CAS  PubMed  Google Scholar 

  54. Nutt CL, Betensky RA, Brower MA et al: YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Clin Cancer Res 2005, 11(6):2258–2264.

    Article  CAS  PubMed  Google Scholar 

  55. Pelloski CE, Mahajan A, Maor M et al: YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res 2005, 11(9):3326–3334.

    Article  CAS  PubMed  Google Scholar 

  56. Pelloski CE, Lin E, Zhang L et al: Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 2006, 12(13):3935–3941.

    Article  CAS  PubMed  Google Scholar 

  57. Persson O, Krogh M, Saal LH et al: Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets. J Neurooncol 2007, 85(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  58. Bozinov O, Kohler S, Samans B et al: Candidate genes for the progression of malignant gliomas identified by microarray analysis. Neurosurg Rev 2008, 31(1):83–89; discussion 89–90.

    Article  PubMed  Google Scholar 

  59. Czernicki T, Zegarska J, Paczek L et al: Gene expression profile as a prognostic factor in high-grade gliomas. Int J Oncol 2007, 30(1):55–64.

    CAS  PubMed  Google Scholar 

  60. Godard S, Getz G, Delorenzi M et al: Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003, 63(20):6613–6625.

    CAS  PubMed  Google Scholar 

  61. Kim S, Dougherty ER, Shmulevich I et al: Identification of combination gene sets for glioma classification. Mol Cancer Ther 2002, 1(13):1229–1236.

    CAS  PubMed  Google Scholar 

  62. Margareto J, Leis O, Larrarte E et al: Gene expression profiling of human gliomas reveals differences between GBM and LGA related to energy metabolism and notch signaling pathways. J Mol Neurosci 2007, 32(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  63. Nutt CL, Mani DR, Betensky RA et al: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003, 63(7):1602–1607.

    CAS  PubMed  Google Scholar 

  64. Shai R, Shi T, Kremen TJ et al: Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003, 22(31):4918–4923.

    Article  CAS  PubMed  Google Scholar 

  65. van den Boom J, Wolter M, Kuick R et al: Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 2003, 163(3):1033–1043.

    PubMed  Google Scholar 

  66. •• Phillips HS, Kharbanda S, Chen R et al: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006, 9(3):157–173. This article identified the proneural, mesenchymal, and proliferative molecular signatures in high-grade gliomas, which have subsequently been recapitulated in multiple datasets.

    Article  CAS  PubMed  Google Scholar 

  67. Gravendeel LA, Kouwenhoven MC, Gevaert O et al: Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009, 69(23):9065–9072.

    Article  CAS  PubMed  Google Scholar 

  68. • Colman H, Zhang L, Sulman EP et al: A multigene predictor of outcome in glioblastoma. Neuro Oncol 2010, 12(1):49–57. These authors developed the first multigene prognostic clinical test in GBM based on gene expression profiling.

    CAS  PubMed  Google Scholar 

  69. Watson MA, Perry A, Budhraja V et al: Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Res 2001, 61(5):1825–1829.

    CAS  PubMed  Google Scholar 

  70. Mukasa A, Ueki K, Matsumoto S et al: Distinction in gene expression profiles of oligodendrogliomas with and without allelic loss of 1p. Oncogene 2002, 21(25):3961–3968.

    Article  CAS  PubMed  Google Scholar 

  71. Huang H, Okamoto Y, Yokoo H et al: Gene expression profiling and subgroup identification of oligodendrogliomas. Oncogene 2004, 23(35):6012–6022.

    Article  CAS  PubMed  Google Scholar 

  72. Mukasa A, Ueki K, Ge X et al: Selective expression of a subset of neuronal genes in oligodendroglioma with chromosome 1p loss. Brain Pathol 2004, 14(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  73. French PJ, Swagemakers SM, Nagel JH et al: Gene expression profiles associated with treatment response in oligodendrogliomas. Cancer Res 2005, 65(24):11335–11344.

    Article  CAS  PubMed  Google Scholar 

  74. Tews B, Felsberg J, Hartmann C et al: Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer 2006, 119(4):792–800.

    Article  CAS  PubMed  Google Scholar 

  75. Ducray F, Idbaih A, de Reynies A et al: Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer 2008, 7:41.

    Article  PubMed  Google Scholar 

  76. Hagerstrand D, Smits A, Eriksson A et al: Gene expression analyses of grade II gliomas and identification of rPTPbeta/zeta as a candidate oligodendroglioma marker. Neuro Oncol 2008, 10(1):2–9.

    Article  PubMed  Google Scholar 

  77. Cairncross JG, Ueki K, Zlatescu MC et al: Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998, 90(19):1473–1479.

    Article  CAS  PubMed  Google Scholar 

  78. •• Parsons DW, Jones S, Zhang X et al: An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321(5897):1807–1812. A whole exome (all expressed genes) sequence analysis of GBM identified a previously unknown mutation of the IDH1 gene with important prognostic significance in gliomas.

    Article  CAS  PubMed  Google Scholar 

  79. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455(7216):1061–1068.

  80. Verhaak RG, Hoadley KA, Purdom E et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17(1):98–110.

    Article  CAS  PubMed  Google Scholar 

  81. Yan H, Parsons DW, Jin G et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009, 360(8):765–773.

    Article  CAS  PubMed  Google Scholar 

  82. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H: IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 2009, 15(19):6002–6007.

    Article  CAS  PubMed  Google Scholar 

  83. Brennan C, Momota H, Hambardzumyan D et al: Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009, 4(11):e7752.

    Article  PubMed  Google Scholar 

  84. •• Noushmehr H, Weisenberger DJ, Diefes K et al: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17(5):510–522. This article used publically available DNA promotor methylation data to identify an epigenetic signature, G-CIMP, as a novel prognostic biomarker in gliomas.

    Article  CAS  PubMed  Google Scholar 

  85. Paik S, Shak S, Tang G et al: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004, 351(27):2817–2826.

    Article  CAS  PubMed  Google Scholar 

  86. van de Vijver MJ, He YD, van’t Veer LJ et al: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347(25):1999–2009.

    Article  PubMed  Google Scholar 

  87. Esteller M, Garcia-Foncillas J, Andion E et al: Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000, 343(19):1350–1354.

    Article  CAS  PubMed  Google Scholar 

  88. Hegi ME, Diserens AC, Gorlia T et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005, 352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  89. Stupp R, Hegi ME, Mason WP et al: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009, 10(5):459–466.

    Article  CAS  PubMed  Google Scholar 

  90. Rivera AL, Pelloski CE, Gilbert MR et al: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 2010, 12(2):116–121.

    CAS  PubMed  Google Scholar 

  91. Sulman EP, Guerrero M, Aldape K: Transcription Profiling of Brain Tumors: Tumor Biology and Treatment Stratification. In: CNS Cancer: Models, Markers, Prognostic Factors, Targets, and Therapeutic Approaches. Edited by Van Meir EG. New YOrk: Humana Press; 2009: 529–552.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. Sulman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Settle, S.H., Sulman, E.P. Tumor Profiling: Development of Prognostic and Predictive Factors to Guide Brain Tumor Treatment. Curr Oncol Rep 13, 26–36 (2011). https://doi.org/10.1007/s11912-010-0138-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-010-0138-8

Keywords

Navigation