Skip to main content

Advertisement

Log in

New markers for cancer detection

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Circulating tumor nucleic acids in blood have been demonstrated to reflect the biologic characteristics of tumors. During tumor progression, aberrant DNA methylation can lead to transcriptional silencing of tumor suppressor genes, DNA repair genes, and metastasis-inhibitor genes. Hypermethylation of multiple genes, detectable in the blood of cancer patients, has demonstrated increasing promise as a specific and sensitive molecular marker for detecting and monitoring cancer. In addition to these epigenetic markers, a number of mRNA markers may also enable cancer detection in the blood of patients with different cancer types. Quantification of circulating tumor cell mRNAs in cancer patients appears to be useful for monitoring cancer progression and response to treatment. DNA methylation markers and mRNA markers in the blood may open up diagnostic and prognostic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen XQ, Stroun M, Magnenat JL, et al.: Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996, 2:1033–1035. This landmark paper demonstrates the presence of easily detectable cancer genetic changes in plasma.

    Article  PubMed  CAS  Google Scholar 

  2. Anker P, Lefort F, Vasioukhin V, et al.: K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 1997, 112:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  3. Esteller M, Sanchez-Cespedes M, Rosell R, et al.: Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999, 59:67–70.

    PubMed  CAS  Google Scholar 

  4. Wong IHN, Lo YMD, Zhang J, et al.: Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999, 59:71–73. The first report on the presence of tumor-derived promoter methylation in plasma of cancer patients.

    PubMed  CAS  Google Scholar 

  5. Wong IHN, Johnson PJ, Lai PB, et al.: Tumor-derived epigenetic changes in the plasma and serum of liver cancer patients: Implications for cancer detection and monitoring. Ann N Y Acad Sci 2000, 906:102–105.

    Article  PubMed  CAS  Google Scholar 

  6. Vasioukhin V, Anker P, Maurice P, et al.: Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994, 86:774–779.

    PubMed  CAS  Google Scholar 

  7. Hibi K, Robinson CR, Booker S, et al.: Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 1998, 58:1405–1407.

    PubMed  CAS  Google Scholar 

  8. Wong IHN, Ng MH, Huang DP, Lee JC: Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all the morphologic subtypes: potential prognostic implications. Blood 2000, 95:1942–1949.

    PubMed  CAS  Google Scholar 

  9. Wong IHN, Lo YMD, Yeo W, et al.: Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res 2000, 6:3516–3521.

    PubMed  CAS  Google Scholar 

  10. Silva JM, Dominguez G, Garcia JM, et al.: Presence of tumor DNA in the plasma of breast cancer patients: clinicopathological correlations. Cancer Res 1999, 59:3251–3256.

    PubMed  CAS  Google Scholar 

  11. Goessl C, Krause H, Muller M, et al.: Fluorescent methylationspecific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 2000, 60:5941–5945.

    PubMed  CAS  Google Scholar 

  12. Rosas SL, Koch W, Costa Carvalho MG, et al.: Promoter hypermethylation patterns of p16, O6-methylguanine-DNAmethyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 2001, 61:939–942.

    PubMed  CAS  Google Scholar 

  13. Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD: Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res 2001, 61:900–902.

    PubMed  CAS  Google Scholar 

  14. Sanchez-Cespedes M, Esteller M, Wu L, et al.: Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000, 60:892–895.

    PubMed  CAS  Google Scholar 

  15. Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000, 16:168–174.

    Article  PubMed  CAS  Google Scholar 

  16. Tang X, Khuri FR, Lee JJ, et al.: Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst 2000, 92:1511–1516.

    Article  PubMed  CAS  Google Scholar 

  17. Wong IHN, Ng MH, Lee JC, et al.: Transcriptional silencing of the p16 gene in human myeloma-derived cell lines by hypermethylation. Br J Haematol 1998, 103:168–175.

    PubMed  CAS  Google Scholar 

  18. Costello JF, Fruhwald MC, Smiraglia DJ, et al.: Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nat Genet 2000, 24:132–138.

    Article  PubMed  CAS  Google Scholar 

  19. Lo YMD, Wong IHN, Zhang J, et al.: Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 1999, 59:3899–3903. Real-time methylation-specific polymerase chain reaction was first developed to show that the methylation index correlated with transcriptional repression in cancer cell lines.

    PubMed  CAS  Google Scholar 

  20. Frickhofen N, Muller E, Sandherr M, et al.: Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood 1997, 90:4953–4960.

    PubMed  CAS  Google Scholar 

  21. Barrett MT, Sanchez CA, Prevo LJ, et al.: Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 1999, 22:106–109.

    Article  PubMed  CAS  Google Scholar 

  22. Maesawa C, Tamura G, Nishizuka S, et al.: Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res 1996, 56:3875–3878.

    PubMed  CAS  Google Scholar 

  23. Pallisgaard N, Hokland P, Riishoj DC, et al.: Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 1998, 92:574–588.

    PubMed  CAS  Google Scholar 

  24. Wong IHN, Lo YMD, Lai PB, Johnson PJ: Relationship of p16 methylation status and serum alpha-fetoprotein concentration in hepatocellular carcinoma patients. Clin Chem 2000, 46:1420–1422.

    PubMed  CAS  Google Scholar 

  25. Wong IHN, Lau WY, Leung T, et al.: Hematogenous dissemination of hepatocytes and tumor cells after surgical resection of hepatocellular carcinoma: a quantitative analysis. Clin Cancer Res 1999, 5:4021–4027.

    PubMed  CAS  Google Scholar 

  26. Wong IHN, Yeo W, Leung T, et al.: Circulating tumor cell mRNAs in peripheral blood from hepatocellular carcinoma patients under radiotherapy, surgical resection or chemotherapy: a quantitative evaluation. Cancer Lett 2001, 167:183–191.

    Article  PubMed  CAS  Google Scholar 

  27. Wong IHN, Yeo W, Chan AT, Johnson PJ: Quantitative relationship of the circulating tumor burden assessed by RT-PCR for cytokeratin 19 mRNA in peripheral blood of colorectal cancer patients with Dukes’ stage, serum carcinoembryonic antigen level and tumor progression. Cancer Lett 2001, 162:65–73.

    Article  PubMed  CAS  Google Scholar 

  28. Wong IHN, Yeo W, Chan AT, Johnson PJ: Quantitative correlation of cytokeratin 19 mRNA in peripheral blood with disease stage and metastasis in breast cancer patients: potential prognostic implications. Int J Oncol 2001, 18:633–638.

    PubMed  CAS  Google Scholar 

  29. Wong IHN, Chan AT, Johnson PJ: Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific mRNA markers: a pilot study. Clin Cancer Res 2000, 6:2183–2188.

    PubMed  CAS  Google Scholar 

  30. Wong IHN, Leung T, Ho S, et al.: Semiquantification of circulating hepatocellular carcinoma cells by reverse transcriptase polymerase chain reaction. Br J Cancer 1997, 76:628–633.

    PubMed  CAS  Google Scholar 

  31. Wong IHN, Lau WY, Leung T, Johnson PJ: Quantitative comparison of alpha-fetoprotein and albumin mRNA levels in hepatocellular carcinoma/adenoma, nontumor liver and blood: implications in cancer detection and monitoring. Cancer Lett 2000, 156:141–149.

    Article  PubMed  CAS  Google Scholar 

  32. Wong IHN, Chan AT, Johnson PJ: Molecular analysis of circulating tumor cells in peripheral blood from patients with germ cell tumor: a quantitative approach. Int J Mol Med 2000, 6:491–494.

    Article  PubMed  CAS  Google Scholar 

  33. Peck K, Sher YP, Shih JY, et al.: Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients. Cancer Res 1998, 58:2761–2765.

    PubMed  CAS  Google Scholar 

  34. Eschwege P, Dumas F, Blanchet P, et al.: Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet 1995, 346:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  35. Dingemans AM, Brakenhoff RH, Postmus PE, Giaccone G: Detection of cytokeratin-19 transcripts by reverse transcriptase polymerase chain reaction in lung cancer cell lines and blood of lung cancer patients. Lab Invest 1997, 77:213–220.

    PubMed  CAS  Google Scholar 

  36. Wadayama B, Toguchida J, Shimizu T, et al.: Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res 1994, 54:3042–3048.

    PubMed  CAS  Google Scholar 

  37. McIntyre JF, Smith-Sorensen B, Friend SH, et al.: Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 1994, 12:925–930.

    PubMed  CAS  Google Scholar 

  38. Matsumura M, Niwa Y, Kato N, et al.: Detection of alphafetoprotein mRNA, an indicator of hematogenous spreading hepatocellular carcinoma, in the circulation: a possible predictor of metastatic hepatocellular carcinoma. Hepatology 1994, 20:1418–1425.

    Article  PubMed  CAS  Google Scholar 

  39. Louha M, Poussin K, Ganne N, et al.: Spontaneous and iatrogenic spreading of liver-derived cells into peripheral blood of patients with primary liver cancer. Hepatology 1997, 26:998–1005.

    Article  PubMed  CAS  Google Scholar 

  40. Cote RJ, Rosen PP, Lesser ML, et al.: Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 1991, 9:1749–1756.

    PubMed  CAS  Google Scholar 

  41. Meyers PA, Gorlick R: Osteosarcoma. Pediatr Clin North Am 1997, 44:973–989.

    Article  PubMed  CAS  Google Scholar 

  42. Sato M, Watanabe Y, Lee T, et al.: Well-differentiated hepatocellular carcinoma: clinicopathological features and results of hepatic resection. Am J Gastroenterol 1995, 90:112–116.

    PubMed  CAS  Google Scholar 

  43. Lo KW, Lo YM, Leung SF, et al.: Analysis of cell-free Epstein-Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem 1999, 45:1292–1294.

    PubMed  CAS  Google Scholar 

  44. Kopreski M, Benko FA, Kwak LW, Gocke CD: Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 1999, 5:1961–1965.

    PubMed  CAS  Google Scholar 

  45. Chen XQ, Bonnefoi H, Pelte MF, et al.: Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res 2000, 6:3823–3826.

    PubMed  CAS  Google Scholar 

  46. Silva NH, Pimenta G, Pulcheri WA, et al.: Detection of messenger RNA in leukocytes or plasma of patients with chronic myeloid leukemia. Oncol Rep 2001, 8:693–696.

    PubMed  CAS  Google Scholar 

  47. Dasi F, Lledo S, Garcia-Granero E, et al.: Real-time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. Lab Invest 2001, 81:767–769.

    Article  PubMed  CAS  Google Scholar 

  48. Hasselmann DO, Rappl G, Rossler M, et al.: Detection of tumor-associated circulating mRNA in serum, plasma and blood cells from patients with disseminated malignant melanoma. Oncol Rep 2001, 8:115–118.

    PubMed  CAS  Google Scholar 

  49. Ng EKO, Tsui NBY, Lam NYL, et al.: Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem 2002, 48:1212–1217.

    PubMed  CAS  Google Scholar 

  50. Hasselmann DO, Rappl G, Tilgen W, Reinhold U: Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 2001, 47:1488–9.

    PubMed  CAS  Google Scholar 

  51. Anker P, Stroun M: Progress in the knowledge of circulating nucleic acids: plasma RNA is particle associated. Can it become a general detection marker for a cancer blood test? Clin Chem 2002, 49:1210–1211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, I.H.N., Lo, Y.M.D. New markers for cancer detection. Curr Oncol Rep 4, 471–477 (2002). https://doi.org/10.1007/s11912-002-0058-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-002-0058-3

Keywords

Navigation