Skip to main content
Log in

Serotonin Selective Reuptake Inhibitors (SSRIs) and Stroke

  • Stroke (H Diener, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The interest in SSRIs after stroke has increased in the past few years, with better knowledge of post-stroke depression and with the demonstrated capacity of some SSRIs to act on the functional recovery of non-depressed subjects.

Recent Findings

Arguments for the action of SSRIs in favour of post-stroke neurological function recovery have improved through new elements: basic science and preclinical data, positive clinical trials and repeated series of stroke patient meta-analysis, and confirmation of favourable safety conditions in post-stroke patients.

Summary

Global coherence is appearing, showing that SSRIs improve stroke recovery in non-depressed patients when given for 3 months after the stroke, with highly favourable safety conditions and a favourable benefit/risk ratio. Large series are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hackett ML, Anderson CS, House A, Xia J. Interventions for treating depression after stroke. Cochrane Database Syst Rev. 2008;4:CD003437. https://doi.org/10.1002/14651858.CD003437.pub3.

    Article  Google Scholar 

  2. Chen Y, Patel NC, Guo JJ, Zhan S. Antidepressant prophylaxis for poststroke depression: a meta-analysis. Int Clin Psychopharmacol. 2007;22(3):159–66.

    Article  Google Scholar 

  3. •• Katherine Salter BA, Sanjit Bhogal, Robert Teasell, Norine Foley, Mark Speechley. Post-stroke depression. The evidence-based review of stroke rehabilitation (EBRSR). Excellent overview of all aspects of post-stroke depression.

  4. Robinson RG. Post stroke depression: prevalence, diagnosis, treatment and disease progression. Biol Psychiatry. 2003;54:376–87.

    Article  Google Scholar 

  5. Liepert J. Pharmacotherapy in restorative neurology. Curr Opin Neurol. 2008;21:639–43.

    Article  CAS  Google Scholar 

  6. Loubinoux I, Chollet F. Neuropharmacology in stroke recovery. In: Cramer SC, Nudo RJ, editors. Brain repair after stroke. Cambridge: Cambridge University Press; 2010. p. 183–93.

    Chapter  Google Scholar 

  7. Chollet F, Acket B, Raposo N, Albucher JF, Loubinoux I, Pariente J. Use of antidepressant medications to improve outcomes after stroke. Curr Neurol Neurosci Rep. 2013;13(1):318. https://doi.org/10.1007/s11910-012-0318-z.

    Article  CAS  PubMed  Google Scholar 

  8. Robinson RG. Poststroke depression: prevalence, diagnosis, treatment and disease progression. Biol Psychiatry. 2003;54:376–87.

    Article  Google Scholar 

  9. Farner L, Wagle J, Engedal K, Flekkoy KM, Wyller TB, Fure B. Depressive symptoms in stroke patients: a 13 month follow-up study of patients referred to a rehabilitation unit. J Affect Disord. 2010;127(1–3):211–8.

    Article  Google Scholar 

  10. Astrom M, Adolfsson R, Asplund K. Major depression in stroke patients: a 3-year longitudinal study. Stroke. 1993;24(7):976–82.

    Article  CAS  Google Scholar 

  11. Berg A, Psych L, Palomaki H, et al. Poststroke depression—an 18-month follow-up. Stroke. 2003;34(1):138–43.

    Article  Google Scholar 

  12. Paolucci S, Gandolfo C, Provinciali L, Torta R, Toso V. The Italian multicenter observational study on post-stroke depression (DESTRO). J Neurol. 2006;253:556–62.

    Article  Google Scholar 

  13. Hackett ML, Anderson CS. Frequency, management, and predictors of abnormal mood after stroke: the Auckland Regional Community Stroke (ARCOS) study, 2002 to 2003. Stroke. 2006;37:2123–8.

    Article  Google Scholar 

  14. Bour A, Rasquin S, Aben I, Boreas A, Limburg M, Verhey F. A one-year follow-up study into the course of depression after stroke. J Nutr Health Aging. 2010;14:488–93.

    Article  CAS  Google Scholar 

  15. Goodwin RD, Devanand DP. Stroke, depression, and functional health outcomes among adults in the community. J Geriatr Psychiatry Neurol. 2008;21:41–6.

    Article  Google Scholar 

  16. Van de Port I, Kwakkel G, van Wijk I, Lindeman E. Susceptibility to deterioration of mobility long-term after stroke: a prospective cohort study. Stroke. 2006;37:167–71.

    Article  Google Scholar 

  17. Robinson RG, Schultz SK, Castillo C, Kopel T, Kosier JT, Newman RM, et al. Nortriptyline versus fluoxetine in the treatment of depression and in short-term recovery after stroke: a placebo-controlled, double-blind study. Am J Psychiatry. 2000;157:351–9.

    Article  CAS  Google Scholar 

  18. Finklestein SP, Weintraub RJ, Karmouz N, Askinazi C, Davar G, Baldessarini RJ. Antidepressant drug treatment for post stroke depression: retrospective study. Arch Phys Med Rehabil. 1987;68:772–6.

    CAS  PubMed  Google Scholar 

  19. Lauritzen L, Bendsen BB, Vilmar T, Bendsen EB, Lunde M, Bech P. Post-stroke depression: combined treatment with imipramine or desipramine and mianserin. A controlled clinical study. Psychopharmacology. 1994;114:119–22.

    Article  CAS  Google Scholar 

  20. Robinson RG, Jorge RE, Clarence-Smith K. Double-blind randomized treatment of poststroke depression using nefiracetam. J Neuropsychiatry Clin Neurosci. 2008;20:178–84.

    Article  CAS  Google Scholar 

  21. Kucukalic A, Bravo-Mehmedbasic A, Kulenovic AD, Suljic-Mehmedika E. Venlafaxine efficacy and tolerability in the treatment of post-stroke depression. Psychiatr Danub. 2007;19:56–60.

    CAS  PubMed  Google Scholar 

  22. Choi-Kwon S, Choi J, Kwon SU, Kang DW, Kim JS. Fluoxetine improves the quality of life in patients with poststroke emotional disturbances. Cerebrovasc Dis. 2008;26(3):266–71.

    Article  CAS  Google Scholar 

  23. Choi-Kwon S, Han SW, Kwon SU, Kang DW, Choi JM, Kim JS. Fluoxetine treatment in poststroke depression, emotional incontinence, and anger proneness: a double-blind, placebo-controlled study. Stroke. 2006;37:156–61.

    Article  CAS  Google Scholar 

  24. Wiart L, Petit H, Joseph PA, Mazaux JM, Barat M. Fluoxetine in early post-stroke depression: a double-blind placebo-controlled study. Stroke. 2000;31:1829–32.

    Article  CAS  Google Scholar 

  25. Fruehwald S, Gatterbauer E, Rehak P, Baumhackl U. Early fluoxetine treatment of post-stroke depression—a three-month double-blind placebo-controlled study with open-label long-term follow up. J Neurol. 2003;250:347–51.

    Article  CAS  Google Scholar 

  26. Deng L, Sun X, Qiu S, Xiong Y, Li Y, Wang L, et al. Interventions for management of post-stroke depression: a Bayesian network meta-analysis of 23 randomized controlled trials. Sci Rep. 2017;7(1):16466. https://doi.org/10.1038/s41598-017-16663-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Liang Y, Jiao Y, Lin J, Qu H, Xu J, et al. Comparative efficacy and acceptability of antidepressant treatment in poststroke depression: a multiple-treatments meta-analysis. BMJ Open. 2017;7(8):e016499. https://doi.org/10.1136/bmjopen-2017-016499.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan S, Huang X, Ding L, Hong H. Efficacy and safety of citalopram in treating post-stroke depression: meta-analysis. Eur Neurol. 2015;74:188–201.

    Article  CAS  Google Scholar 

  29. Xu JH, Jiang P. Medicine (Baltimore) Efficacy of escitalopram oxalate for patients with post-stroke depression. 2018;97(14):e0219. https://doi.org/10.1097/MD.0000000000010219.

    Article  CAS  Google Scholar 

  30. • Paolucci S. Advances in antidepressants for treating post-stroke depression. Expert Opin Pharmacother. 2017;18(10):1011–7. https://doi.org/10.1080/14656566.2017.1334765 Excellent review addressing the remaining unsolved questions in post-stroke depression.

    Article  CAS  PubMed  Google Scholar 

  31. Gainotti G, Antonucci G, Marra C, Paolucci S. Relation between depression after stroke, antidepressant therapy and functional recovery. J Neurol Neurosurg Psychiatry. 2001;71:258–61.

    Article  CAS  Google Scholar 

  32. Miyai I, Reding MJ. Effects of antidepressants on functional recovery following stroke: a double-blind study. J Neuro Rehab. 1998;12:5–13.

    Google Scholar 

  33. Narushima K, Chan KL, Kosier JT, Robinson RG. Does cognitive recovery after treatment of poststroke depression last? A 2-year follow-up of cognitive function associated with poststroke depression. Am J Psychiatry. 2003;160:1157–62.

    Article  Google Scholar 

  34. Schmid AA, Kroenke K, Hendrie HC, Bakas T, Sutherland JM, Williams LS. Poststroke depression and treatment effects on functional outcomes. Neurology. 2011;76(11):1000–5.

    Article  CAS  Google Scholar 

  35. Kim JS, Lee EJ, Chang DI, Park JH, Ahn SH, Cha JK, et al. Efficacy of early administration of escitalopram on depressive and emotional symptoms and neurological dysfunction after stroke: a multicentre, double-blind, randomised, placebo-controlled study. Lancet Psychiatry. 2017;4(1):33–41. https://doi.org/10.1016/S2215-0366(16)30417-5.

    Article  PubMed  Google Scholar 

  36. Salter KL, Foley NC, Zhu L, Jutai JW, Teasell RW. Prevention of poststroke depression: does prophylactic pharmacotherapy work? J Stroke Cerebrovasc Dis. 2013;22(8):1243–51. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.03.013.

    Article  PubMed  Google Scholar 

  37. Goldstein LB. Influence of common drugs and related factors on stroke outcome. Curr Opin Neurol. 1997;10:52–7.

    Article  CAS  Google Scholar 

  38. Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. Neurosci Res. 2009;87:1037–45.

    Article  CAS  Google Scholar 

  39. Li WL, Cai HH, Wang B, Chen L, Zhou QG, Luo CX, et al. Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res. 2009;87:112–22.

    Article  CAS  Google Scholar 

  40. • McCann SK, Irvine C, Mead GE, Sena ES, Currie GL, Egan KE, et al. Efficacy of antidepressants in animal models of ischemic stroke: a systematic review and meta-analysis. Stroke. 2014;45(10):3055–63. https://doi.org/10.1161/STROKEAHA.114.006304 Excellent analysis and summary of all available preclinical data concerning SSRIs mechanism of action in animal models.

    Article  CAS  PubMed  Google Scholar 

  41. Mead GE, Hsieh CF, Lee R, Kutlubaev MA, Claxton A, Hankey GJ, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev. 2012;11:CD009286. https://doi.org/10.1002/14651858.CD009286.pub2 Review.

    Article  PubMed  Google Scholar 

  42. •• Siepmann T, Penzlin AI, Kepplinger J, Illigens BM, Weidner K, Reichmann H, Barlinn K. Selective serotonin reuptake inhibitors to improve outcome in acute ischemic stroke: possible mechanisms and clinical evidence. Brain Behav. 2015;5(10):e00373. doi: https://doi.org/10.1002/brb3.373. eCollection 2015 Oct. Very complete review of the SSRIs basic science identified mechanisms of action.

    Article  Google Scholar 

  43. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    Article  CAS  Google Scholar 

  44. Kirino T. Delayed neuronal death. Neuropathology. 2000;20:95–7.

    Article  Google Scholar 

  45. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis antidepressant treatments and animal models of depressive-like behaviour. Behav Pharmacol. 2003;301:805–9.

    CAS  Google Scholar 

  46. Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive like behaviour. Behav Pharmacol. 2007;18:391–418.

    Article  CAS  Google Scholar 

  47. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18:7768–78.

    Article  CAS  Google Scholar 

  48. Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000;20:1166–73.

    Article  CAS  Google Scholar 

  49. Jiang W, Gu W, Brannstrom T, Rosqvist R, Wester P. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke. 2001;32:1201–120.

    Article  CAS  Google Scholar 

  50. Wiltrout C, Lang B, Yan Y, Dempsey RJ, Vemuganti R. Repairing brain after stroke: a review on post-ischaemic neurogenesis. Neurochem Int. 2007;50:1028–41.

    Article  CAS  Google Scholar 

  51. Chollet F, DiPiero V, Wise RJS, Brooks DJ, Dolan RJ, Frackowiak RSJ. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol. 1991;26:63–71.

    Article  Google Scholar 

  52. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:2518–27.

    Article  CAS  Google Scholar 

  53. Acler M, Robol E, Fiaschi A, Manganotti P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol. 2009;256(7):1152–8.

    Article  CAS  Google Scholar 

  54. Pariente J, Loubinoux I, Carel C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50:718–29.

    Article  CAS  Google Scholar 

  55. Gerdelat-Mas A, Loubinoux I, Tombari D, Rascol O, Chollet F, Simonetta-Moreau M. Chronic administration of selective serotonin reuptake inhibitor (SSRI) paroxetine modulates human motor cortex excitability in healthy subjects. NeuroImage. 2005;27:314–22.

    Article  CAS  Google Scholar 

  56. Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, et al. SSRI and motor recovery in stroke: reestablishment of inhibitory neural network tonus. Front Neurosci. 2017;11:637. https://doi.org/10.3389/fnins.2017.00637 eCollection 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol. 2013;241:84–94. https://doi.org/10.1016/j.expneurol.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  58. Rief W, Barsky AJ, Bingel U, Doering BK, Schwarting R, Wöhr M, et al. Rethinking psychopharmacotherapy: the role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev. 2016;60:51–64. https://doi.org/10.1016/j.neubiorev.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  59. Stahl SM. Mechanism of action of serotonin selective reuptake inhibitors. J Affect Disord. 2017;51:215–35. https://doi.org/10.1016/S0165-0327(98)00221-3.

    Article  Google Scholar 

  60. Etherton M, Siddiqui KA, Ayres A, Schwamm LH. Abstract WP174: prestroke selective serotonin reuptake inhibitor use and functional outcomes in ischemic stroke. Stroke. 2016;47:AWP174 Available online at: http://stroke.ahajournals.org/content/47/Suppl_1/AWP174.

    Google Scholar 

  61. Shin TK, Kang MS, Lee HY, Seo MS, Kim SG, Kim CD, et al. Fluoxetine and sertraline attenuate postischemic brain injury in mice. Korean J Physiol Pharmacol. 2009;13:257–63.

    Article  CAS  Google Scholar 

  62. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, et al. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci. 1999;40:182–9.

    CAS  PubMed  Google Scholar 

  63. Palvimaki E-P, Laakso A, Kuoppamaki M, Syvilahti E, Hietala J. Up-regulation of beta l-adrenergic receptors in rat brain after chronic citalopram and fluoxetine treatments. Psychopharmacology. 1994;115:543–6.

    Article  CAS  Google Scholar 

  64. Tiradentes RV, Pires JG, Silva NF, Ramage AG, Santuzzi CH, Futuro Neto HA. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity. Braz J Med Biol Res. 2014;47:554–9.

    Article  CAS  Google Scholar 

  65. Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 2017;7(1):14926. https://doi.org/10.1038/s41598-017-13929-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee EJ, Oh MS, Kim JS, Chang DI, Park JH, Cha JK, et al. EMOTION investigators. Serotonin transporter gene polymorphisms may be associated with poststroke neurological recovery after escitalopram use. J Neurol Neurosurg Psychiatry. 2018;89(3):271–6. https://doi.org/10.1136/jnnp-2017-316882.

    Article  PubMed  Google Scholar 

  67. Dam M, Tonin P, De Boni A, et al. Effects of fluoxetine and maprotiline on functional recovery in post stroke hemiplegic patients undergoing rehabilitation therapy. Stroke. 1996;27:1211–4.

    Article  CAS  Google Scholar 

  68. Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair. 2008;22:311–4.

    Article  Google Scholar 

  69. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.

    Article  CAS  Google Scholar 

  70. •• Savadi Oskouie D, Sharifipour E, Sadeghi Bazargani H, Hashemilar M, Nikanfar M, Ghazanfari Amlashi S, et al. Efficacy of Citalopram on Acute Ischemic Stroke Outcome: A Randomized Clinical Trial. Neurorehabil Neural Repair. 2017;31(7):638–47. https://doi.org/10.1177/1545968317704902 The most recent and largest clinical trial showing citalopram improves NIHSS reduction 3 months after an ischemic stroke.

    Article  PubMed  Google Scholar 

  71. Mikami K, Jorge RE, Adams HP Jr, Davis PH, Leira EC, Jang M, Robinson RG. Effect of antidepressants on the course of disability following stroke. Am J Geriatr Psychiatry. 2011.

  72. Etherton MR, Siddiqui KA, Schwamm LH. Prestroke selective serotonin reuptake inhibitor use and functional outcomes after ischaemic stroke. Stroke Vasc Neurol. 2018;3(1):9–16. https://doi.org/10.1136/svn-2017-000119 eCollection 2018 Mar.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jorge RE, Acion L, Moser D, Adams HP Jr, Robinson RG. Escitalopram and enhancement of cognitive recovery following stroke. Arch Gen Psychiatry. 2010;67(2):187–96. https://doi.org/10.1001/archgenpsychiatry.2009.185.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tanaka Y, Albert ML, Aketa S, et al. Serotonergic therapy for fluent aphasia. Neurology. 2004;72(7, Suppl S5):A166.

    Google Scholar 

  75. •• Hillis AE, Beh YY, Sebastian R, Breining B, Tippett DC, Wright A, et al. Predicting recovery in acute poststroke aphasia. Ann Neurol. 2018;83(3):612–22. https://doi.org/10.1002/ana.25184 Very smart study showing the potential effect of citalopram on post-stroke naming in aphasic patients.

    Article  CAS  Google Scholar 

  76. Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother. 2017;17(11):1091–107. https://doi.org/10.1080/14737175.2017.1373020.

    Article  CAS  PubMed  Google Scholar 

  77. Abramoff BA, Milton SB, Belagaje SR. Improvement in compensation for chronic poststroke homonymous hemianopsia after initiation of a selective serotonin reuptake inhibitor: a case report. PM R. 2017;9(7):727–31. https://doi.org/10.1016/j.pmrj.2016.11.004.

    Article  PubMed  Google Scholar 

  78. Yeo SH, Lim ZI, Mao J, Yau WP. Effects of central nervous system drugs on recovery after stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Drug Investig. 2017;37(10):901–28. https://doi.org/10.1007/s40261-017-0558-4 Review.

    Article  CAS  PubMed  Google Scholar 

  79. Gu SC, Wang CD. Early selective serotonin reuptake inhibitors for recovery after stroke: a meta-analysis and trial sequential analysis. J Stroke Cerebrovasc Dis. 2018;27(5):1178–89. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.11.031.

    Article  PubMed  Google Scholar 

  80. Graham C, Lewis S, Forbes J, Mead G, Hackett ML, Hankey GJ, et al. The FOCUS, AFFINITY and EFFECTS trials studying the effect(s) of fluoxetine in patients with a recent stroke: statistical and health economic analysis plan for the trials and for the individual patient data meta-analysis. Trials. 2017;18(1):627. https://doi.org/10.1186/s13063-017-2385-6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schellen C, Ferrari J, Lang W, Sykora M. VISTA Collaborators Effects of SSRI exposure on hemorrhagic complications and outcome following thrombolysis in ischemic stroke. Int J Stroke. 2017;13:511–7. https://doi.org/10.1177/1747493017743055.

    Article  PubMed  Google Scholar 

  82. Scheitz JF, Turc G, Kujala L, Polymeris AA, Heldner MR, Zonneveld TP, et al. Nolte CH; TRISP Collaboration. Intracerebral hemorrhage and outcome after thrombolysis in stroke patients using selective serotonin-reuptake inhibitors. Stroke. 2017;48(12):3239–44. https://doi.org/10.1161/STROKEAHA.117.018377.

    Article  CAS  PubMed  Google Scholar 

  83. Smith MM, Smith BB, Lahr BD, Nuttall GA, Mauermann WJ, Weister TJ, et al. Selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors are not associated with bleeding or transfusion in cardiac surgical patients. Anesth Analg. 2017;126:1859–66. https://doi.org/10.1213/ANE.0000000000002668.

    Article  CAS  Google Scholar 

  84. Hackam DG, Mrkobrada M. Selective serotonin reuptake inhibitors and brain hemorrhage: a meta-analysis. Neurology. 2012;79:1862–5.

    Article  CAS  Google Scholar 

  85. • Howland RH. Antidepressant drugs and the risk of intracranial bleeding: parsing an observational study. J Psychosoc Nurs Ment Health Serv. 2016;54:21–4 Update on the risk of intracranial bleeding.

    PubMed  Google Scholar 

  86. Ayerbe L, Ayis S, Crichton SL, Rudd AG, Wolfe CDA. Explanatory factors for the increased mortality of stroke patients with depression. Neurology. 2014;83:2007–12.

    Article  CAS  Google Scholar 

  87. Chan CH, Huang HH, Lin CH, Kuan YC, Loh EW, Lan TH. Risk of first onset stroke in SSRI-exposed adult subjects: survival analysis and examination of age and time effects. J Clin Psychiatry. 2017;78(8):e1006–12. https://doi.org/10.4088/JCP.16m11123.

    Article  PubMed  Google Scholar 

  88. Mortensen JK, Johnsen SP, Larsson H, Andersen G. Early antidepressant treatment and all-cause 30-day mortality in patients with ischemic stroke. Cerebrovasc Dis. 2015;40:81–90.

    Article  CAS  Google Scholar 

  89. Mortensen JK, Larsson H, Johnsen SP, Andersen G. Post stroke use of selective serotonin reuptake inhibitors and clinical outcome among patients with ischemic stroke: a nationwide propensity score-matched follow-up study. Stroke. 2013;44:420–6.

    Article  CAS  Google Scholar 

  90. Ried LD, Jia H, Feng H, Cameon R, Wang X, Tueth M, et al. Selective serotonin reuptake inhibitor treatment and depression are associated with poststroke mortality. Ann Pharmacother. 2011;45:888–97.

    Article  Google Scholar 

  91. Chu CS, Chou PH, Lin CH, Cheng C, Tsai CJ, Lan TH, et al. Use of selective serotonin reuptake inhibitors and risks of stroke in patients with obsessive compulsive disorder: a population-based study. PLoS One. 2016;11(9):e0162239. https://doi.org/10.1371/journal.pone.0162239 eCollection 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wada Y, Shiraishi J, Nakamura M, Hasegawa H. Prolonged but not acute fluoxetine administration produces its inhibitory effect on hippocampal seizures in rats. Psychopharmacology. 1995;118(3):305–9.

    Article  CAS  Google Scholar 

  93. Igelström KM. Preclinical antiepileptic actions of selective serotonin reuptake inhibitors: implications for clinical trial design. Epilepsia. 2012;53(4):596–605.

    Article  Google Scholar 

  94. Hill T, Coupland C, Morriss R, Arthur A, Moore M, Hippisley-Cox J. Antidepressant use and risk of epilepsy and seizures in people aged 20 to 64 years: cohort study using a primary care database. BMC Psychiatry. 2015;15:315. https://doi.org/10.1186/s12888-015-0701-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chou CC, Yen DJ, Lin YY, Wang YC, Lin CL, Kao CH. Selective serotonin reuptake inhibitors and poststroke epilepsy: a population-based nationwide study. Mayo Clin Proc. 2017;92(2):193–9. https://doi.org/10.1016/j.mayocp.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  96. de Abajo FJ, Rodríguez LA, Montero D. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study. BMJ. 1999;319:1106–9.

    Article  Google Scholar 

  97. Russo NW, Petrucci G, Rocca B. Aspirin, stroke and drug-drug interactions. Vasc Pharmacol. 2016;87:14–22. https://doi.org/10.1016/j.vph.2016.10.006 Review.

    Article  CAS  Google Scholar 

  98. Bykov K, Schneeweiss S, Donneyong MM, Dong YH, Choudhry NK, Gagne JJ. Impact of an interaction between clopidogrel and selective serotonin reuptake inhibitors. Am J Cardiol. 2017;119(4):651–7. https://doi.org/10.1016/j.amjcard.2016.10.052.

    Article  CAS  PubMed  Google Scholar 

  99. Lam RW. Antidepressants and QTc prolongation. J Psychiatry Neurosci. 2013;38(2):E5–6. https://doi.org/10.1503/jpn.120256.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chollet.

Ethics declarations

Conflict of Interest

Marianne Barbieux-Guillot reports grants from “Groupement interrégional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer”, outside the submitted work.

François Chollet, Philippe Marque, Jean Francois Albucher, Nicolas Raposo, Vincent Fabry, Julien Rigal, Jérémie Pariente, and Isabelle Loubinoux each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chollet, F., Rigal, J., Marque, P. et al. Serotonin Selective Reuptake Inhibitors (SSRIs) and Stroke. Curr Neurol Neurosci Rep 18, 100 (2018). https://doi.org/10.1007/s11910-018-0904-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0904-9

Keywords

Navigation