Skip to main content
Log in

Circadian Rhythm Disturbances in the Blind

  • Sleep (M Thorpy and M Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep timing, quantity, and quality are controlled by homeostatic and circadian systems. Circadian clock systems are present in all cells and organs and their timing is determined by a transcriptional-translational feedback loop of circadian genes. Individual cellular clocks are synchronized by the central body clock, situated in the suprachiasmatic nucleus, which communicates with them through humoral and neural signals including melatonin. The circadian system controls both the circadian period: (i.e., the length of the intrinsic clock), but also the circadian phase (i.e., the clock timing). An important determinant of the circadian system is light exposure. In most humans, the circadian period is slightly longer than 24 h and without regular resetting it tends to drift, leading to progressively later bedtimes and wake times and a tendency to cycle though periods of normal and abnormal sleep. Blind patients are thus at an increased risk of abnormal circadian function. The purpose of this article is to review recent research and clinical management of circadian rhythm disorders in blind patients.

Recent Findings

Blind patients can present delayed and advanced sleep phase disorders but the most common abnormality in totally blind patients without light perception is non-24-hour sleep-wake disorder (N24SWD). This is rare in the general population but may affect up to 50% of blind patients without light perception. The diagnosis of a circadian rhythm disorder in the blind is complex. New screening tools have been developed but actigraphy and repeated melatonin profiles over 24 h remain essential.

Summary

Circadian disorders in the blind are frequent, especially in the patients without light perception. They require accurate diagnosis in order to target treatment. Determining the precise nature of a sleep disorder in blind patients with a suspected circadian rhythm abnormality is complex and requires a detailed clinical history with sleep diaries and the use of actigraphy and melatonin profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Leasher JL, Bourne RRA, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care. 2016;39:1643–9.

    Article  PubMed  Google Scholar 

  2. Congdon N, O’Colmain B, Klaver CCW, Klein R, Muñoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the UnitedStates. Arch Ophthalmol. 2004;122:477.

    Article  PubMed  Google Scholar 

  3. •• Flynn-Evans EE, Lockley SW. A pre-screening questionnaire to predict non-24-hour sleep-wake rhythm disorder (N24HSWD) among the blind. J Clin Sleep Med. 2016;12:703–10. The authors propose a screening tool for N24SWD for use in the blind population.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miles LE, Wilson MA. High incidence of cyclic sleep/wake disorders in the blind. Sleep Res. 1977;6:192.

    Google Scholar 

  5. Leger D, Guilleminault C, Defrance R, Domont A, Paillard M. Prevalence of sleep/wake disorders in persons with blindness. Clin Sci (Lond). 1999;97:193–9.

    Article  CAS  Google Scholar 

  6. Tabandeh H, Lockley SW, Buttery R, Skene DJ, Defrance R, Arendt J, et al. Disturbance of sleep in blindness. Am J Ophthalmol. 1998;126:707–12.

    Article  CAS  PubMed  Google Scholar 

  7. Warman GR, Pawley MDM, Bolton C, Cheeseman JF, Fernando AT, Arendt J, et al. Circadian-related sleep disorders and sleep medication use in the New Zealand blind population: an observational prevalence survey. Yamazaki S, editor. PLoS One. 2011;6:e22073.

  8. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.

    Article  CAS  PubMed  Google Scholar 

  9. Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm. 2005;20:391–403.

    Article  CAS  Google Scholar 

  10. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271–7.

    Article  CAS  PubMed  Google Scholar 

  11. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284:2177–81.

    Article  CAS  PubMed  Google Scholar 

  12. Carskadon MA, Labyak SE, Acebo C, Seifer R. Intrinsic circadian period of adolescent humans measured in conditions of forced desynchrony. Neurosci Lett. 1999;260:129–32.

    Article  CAS  PubMed  Google Scholar 

  13. Dijk DJ, Duffy JF, Czeisler CA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int. 2000;17:285–311.

    Article  CAS  PubMed  Google Scholar 

  14. Pagani L, Semenova EA, Moriggi E, Revell VL, Hack LM, Lockley SW, et al. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. Reif A, editor. PLoS One. 2010;5:e13376.

  15. Hida A, Kitamura S, Katayose Y, Kato M, Ono H, Kadotani H, et al. Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness–eveningness preference and circadian rhythm sleep disorder. Sci Rep. 2015;4:6309.

    Article  CAS  Google Scholar 

  16. Lerner AB, Case JD, TakahashiI Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem. 1960;235:1992–7.

    CAS  PubMed  Google Scholar 

  17. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–10.

    Article  CAS  PubMed  Google Scholar 

  18. Alarma-Estrany P, Pintor J. Melatonin receptors in the eye: location, second messengers and role in ocular physiology. Pharmacol Ther. 2007;113:507–22.

    Article  CAS  PubMed  Google Scholar 

  19. Launay JM, Lamaître BJ, Husson HP, Dreux C, Hartmann L, Da Prada M. Melatonin synthesis by rabbit platelets. Life Sci. 1982;31:1487–94.

    Article  CAS  PubMed  Google Scholar 

  20. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62:343–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mailliet F, Ferry G, Vella F, Berger S, Cogé F, Chomarat P, et al. Characterization of the melatoninergic MT3 binding site on the NRH:quinone oxidoreductase 2 enzyme. Biochem Pharmacol. 2005;71:74–88.

    Article  CAS  PubMed  Google Scholar 

  22. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, et al. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275:31311–7.

    Article  CAS  PubMed  Google Scholar 

  23. Challet E. Keeping circadian time with hormones. Diabetes Obes Metab. 2015;17(Suppl 1):76–83.

    Article  CAS  PubMed  Google Scholar 

  24. Paine S, Fink J, Gander P, Warman GR. Identifying advanced and delayed sleep phase disorders in the general population: a national survey of New Zealand adults. Chronobiol Int. 2014;31:627–36.

    Article  PubMed  Google Scholar 

  25. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003;26:413–5.

    Article  PubMed  Google Scholar 

  26. Hida A, Kitamura S, Katayose Y, Kato M, Ono H, Kadotani H, et al. Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness-eveningness preference and circadian rhythm sleep disorder. Sci Rep. 2014;9:6309.

    Google Scholar 

  27. Kripke D, Klimeckie W, Nievergelt C, Rex K, Murray S. T S. Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles. Psychiatry Investig. 2014;11:345–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med. 1999;5:1062–5.

    Article  CAS  PubMed  Google Scholar 

  29. Hayakawa T, Uchiyama M, Kamei Y, Shibui K, Tagaya H, Asada T, et al. Clinical analyses of sighted patients with non-24-hour sleep-wake syndrome: a study of 57 consecutively diagnosed cases. Sleep. 2005;28:945–52.

    Article  PubMed  Google Scholar 

  30. Tagaya H, Matsuno Y, Atsumi Y. A schizophrenic with non-24-hour sleep-wake syndrome. Jpn J Psychiatry Neurol. 1993;47:441–2.

    CAS  PubMed  Google Scholar 

  31. Wulff K, Dijk D-J, Middleton B, Foster RG, Joyce EM. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry. 2012;200:308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McArthur AJ, Lewy AJ, Sack RL. Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep. 1996;19:544–53.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura K, Hashimoto S, Honma S, Honma K, Tagawa Y. A sighted man with non-24-hour sleep-wake syndrome shows damped plasma melatonin rhythm. Psychiatry Clin Neurosci. 1997;51:115–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kokkoris CP, Weitzman ED, Pollak CP, Spielman AJ, Czeisler CA, Bradlow H. Long-term ambulatory temperature monitoring in a subject with a hypernychthemeral sleep--wake cycle disturbance. Sleep. 1978;1:177–90.

    Article  CAS  PubMed  Google Scholar 

  35. •• Micic G, Lovato N, Gradisar M, Burgess HJ, Ferguson SA, Lack L. Circadian melatonin and temperature Taus in delayed sleep-wake phase disorder and non-24-hour sleep-wake rhythm disorder patients. J Biol Rhythm. 2016;31:387–405. The authors demonstrate longer circadian periods in patients with N24SWD which increases the likelihood of developing circadian disorders and relapse following treatment.

    Article  CAS  Google Scholar 

  36. Kitamura S, Hida A, Enomoto M, Watanabe M, Katayose Y, Nozaki K, et al. Intrinsic circadian period of sighted patients with circadian rhythm sleep disorder, free-running type. Biol Psychiatry. 2013;73:63–9.

    Article  PubMed  Google Scholar 

  37. Uchiyama M, Okawa M, Shibui K, Kim K, Tagaya H, Kudo Y, et al. Altered phase relation between sleep timing and core body temperature rhythm in delayed sleep phase syndrome and non-24-hour sleep-wake syndrome in humans. Neurosci Lett. 2000;294:101–4.

    Article  CAS  PubMed  Google Scholar 

  38. Uchiyama M, Okawa M, Shibui K, Liu X, Hayakawa T, Kamei Y, et al. Poor compensatory function for sleep loss as a pathogenic factor in patients with delayed sleep phase syndrome. Sleep. 2000;23:553–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tzischinsky O, Skene D, Epstein R, Lavie P. Circadian rhythms in 6-sulphatoxymelatonin and nocturnal sleep in blind children. Chronobiol Int. 1991;8:168–75.

    Article  CAS  PubMed  Google Scholar 

  40. •• Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise. J Physiol Sci. 2017;67:1–10. A comprehensive review of non-photic zeitgebers in animal studies and in man.

    Article  CAS  PubMed  Google Scholar 

  41. Mistlberger RE, Skene DJ. Nonphotic entrainment in humans? J Biol Rhythm. 2005;20:339–52.

    Article  Google Scholar 

  42. Lockley SW, Dijk D-J, Kosti O, Skene DJ, Arendt J. Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res. 2008;17:207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miles LE, Raynal DM, Wilson MA. Blind man living in normal society has circadian rhythms of 24.9 hours. Science. 1977;198:421–3.

    Article  CAS  PubMed  Google Scholar 

  44. Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab. 1992;75:127–34.

    CAS  PubMed  Google Scholar 

  45. Lockley SW, Skene DJ, Arendt J, Tabandeh H, Bird AC, Defrance R. Relationship between melatonin rhythms and visual loss in the blind 1. J Clin Endocrinol Metab. 1997;82:3763–70.

    CAS  PubMed  Google Scholar 

  46. Skene DJ, Lockley SW, James K, Arendt J. Correlation between urinary cortisol and 6-sulphatoxymelatonin rhythms in field studies of blind subjects. Clin Endocrinol. 1999;50:715–9.

    Article  CAS  Google Scholar 

  47. Tamura N, Sasai-Sakuma T, Morita Y, Okawa M, Inoue S, Inoue YA. Nationwide cross-sectional survey of sleep-related problems in Japanese visually impaired patients: prevalence and association with health-related quality of life. J Clin Sleep Med. 2016;12:1659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Flynn-Evans EE, Tabandeh H, Skene DJ, Lockley SW. Circadian rhythm disorders and melatonin production in 127 blind women with and without light perception. J Biol Rhythm. 2014;29:215–24. The authors report a detailed study of circadian rhythms with melatonin profiles in blind women.

    Article  CAS  Google Scholar 

  49. Duffy JF, Cain S, Chang A, Phillips A, Munch M, Gronfier C, et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci. 2011;108:15602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salva MAQ, Hartley S, Léger D, Dauvilliers YA. Non-24-hour sleep-wake rhythm disorder in the totally blind: diagnosis and management. Front Neurol. 2017;8:686.

    Article  Google Scholar 

  51. Saxvig I, Pallesen S, Wilhelmsen-Langeland A, Molde H, Bjorvatn B. Prevalance and correlates of delayed sleep phase in high school students. Sleep Med. 2012;13:193–9.

    Article  PubMed  Google Scholar 

  52. Richardson C, Micic G, Cain N, Maddock B, Gradisar M. Cognitive performance in adolescents with delayed sleep-wake phase disorder: treatment effects and a comparison with good sleepers. J Adolesc. 2018;65:72–84.

    Article  CAS  PubMed  Google Scholar 

  53. •• Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med. 2015;11:1199–236. The authors provide an evidence-based guideline for the management of circadian rhythm disorders in clinical practice.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hartley.

Ethics declarations

Conflict of Interest

Sarah Hartley and Yves Dauvilliers have received a grant from Vanda (investigator for tasimelteon study in totally blind patients).

Maria-Antonia Quera-Salva has received a grant from Vanda (investigator for tasimelteon study in totally blind patients), grants from Les gueules cassées, Fondation Vinci pour une conduite responsable, and Bioprojet, and personal fees from Journal l’ encephale.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartley, S., Dauvilliers, Y. & Quera-Salva, MA. Circadian Rhythm Disturbances in the Blind. Curr Neurol Neurosci Rep 18, 65 (2018). https://doi.org/10.1007/s11910-018-0876-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0876-9

Keywords

Navigation