Skip to main content

Advertisement

Log in

Cerebral Metabolic Changes During Sleep

  • Sleep (M Thorpy and M Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep.

Recent Findings

Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates.

Summary

We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AcAc:

Acetoacetate

AMPK:

AMP-activated protein kinase

β-HB:

β-Hydroxybutyrate

BBB:

Blood–brain barrier

CMRglc:

Metabolic rate of glucose

CMRO2 :

Metabolic rate of oxygen

CPT:

Carnitine palmitoyltransferase

FFA:

Free fatty acid

MCT:

Monocarboxylate transporter

NE:

Norepinephrine

OGI:

Oxygen-glucose index

PPP:

Pentose phosphate pathway

REM:

Rapid eye movement

ROS:

Reactive oxygen species

RQ:

Respiratory quotient

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chatelle C, Laureys S, Schnakers C. Disorders of consciousness: what do we know? In: Dehaene S, Christen Y, editors. Characterizing consciousness: from cognition to the clinic? Berlin: Springer; 2011. p. 85–98.

    Chapter  Google Scholar 

  2. Bodart O, Gosseries O, Wannez S, Thibaut A, Annen J, Boly M, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 2017;14:354–62. https://doi.org/10.1016/j.nicl.2017.02.002.

  3. Shulman RG, Hyder F, Rothman DL. Baseline brain energy supports the state of consciousness. Proc Natl Acad Sci U S A. 2009;106(27):11096–101. https://doi.org/10.1073/pnas.0903941106.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stender J, Mortensen KN, Thibaut A, Darkner S, Laureys S, Gjedde A, et al. The minimal energetic requirement of sustained awareness after brain injury. Curr Biol. 2016;26(11):1494–9. https://doi.org/10.1016/j.cub.2016.04.024.

  5. DiNuzzo M, Nedergaard M. Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol. 2017;47:65–72. https://doi.org/10.1016/j.conb.2017.09.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shulman RG. A philosophical analysis of neuroenergetics. Front Neuroenerg. 2011;3:6. https://doi.org/10.3389/fnene.2011.00006.

    Article  CAS  Google Scholar 

  7. DiNuzzo M. Astrocyte-neuron interactions during learning may occur by lactate signaling rather than metabolism. Front Integr Neurosci. 2016;10:2. https://doi.org/10.3389/fnint.2016.00002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, et al. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron. 2006;50(5):711–22. https://doi.org/10.1016/j.neuron.2006.04.032.

  9. Varin C, Rancillac A, Geoffroy H, Arthaud S, Fort P, Gallopin T. Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci. 2015;35(27):9900–11. https://doi.org/10.1523/jneurosci.0609-15.2015.

    Article  PubMed  CAS  Google Scholar 

  10. Tang F, Lane S, Korsak A, Paton JF, Gourine AV, Kasparov S, et al. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun. 2014;5:3284. https://doi.org/10.1038/ncomms4284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology. 2017;113(Pt B):639–51. https://doi.org/10.1016/j.neuropharm.2015.05.013.

    Article  PubMed  CAS  Google Scholar 

  12. Offermanns S, Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med. 2015;21(4):245–55. https://doi.org/10.1016/j.molmed.2015.02.002.

    Article  PubMed  CAS  Google Scholar 

  13. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res. 2015;93(7):1045–55. https://doi.org/10.1002/jnr.23593.

  14. Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, et al. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain. 2016;139(2):431–43. https://doi.org/10.1093/brain/awv325.

  15. Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A. 2014;111(33):12228–33. https://doi.org/10.1073/pnas.1322912111.

  16. Simeone TA, Simeone KA, Rho JM. Ketone bodies as anti-seizure agents. Neurochem Res. 2017;42(7):2011–8. https://doi.org/10.1007/s11064-017-2253-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63. https://doi.org/10.1016/j.neulet.2016.02.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kayaba M, Park I, Iwayama K, Seya Y, Ogata H, Yajima K, et al. Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metabolism. 2017;69:14–23. https://doi.org/10.1016/j.metabol.2016.12.016.

  19. Hibi M, Kubota C, Mizuno T, Aritake S, Mitsui Y, Katashima M, et al. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial. Sci Rep. 2017;7:39640. https://doi.org/10.1038/srep39640.

  20. Shechter A, Rising R, Albu JB, St-Onge MP. Experimental sleep curtailment causes wake-dependent increases in 24-h energy expenditure as measured by whole-room indirect calorimetry. Am J Clin Nutr. 2013;98(6):1433–9. https://doi.org/10.3945/ajcn.113.069427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Klingenberg L, Chaput JP, Holmback U, Jennum P, Astrup A, Sjodin A. Sleep restriction is not associated with a positive energy balance in adolescent boys. Am J Clin Nutr. 2012;96(2):240–8. https://doi.org/10.3945/ajcn.112.038638.

    Article  PubMed  CAS  Google Scholar 

  22. Wildenhoff KE, Johansen JP, Karstoft H, Yde H, Sorensen NS. Diurnal variations in the concentrations of blood acetoacetate and 3-hydroxybutyrate. The ketone body peak around midnight and its relationship to free fatty acids, glycerol, insulin, growth hormone and glucose in serum and plasma. Acta Med Scand. 1974;195:25–8.

    Article  PubMed  CAS  Google Scholar 

  23. Schlierf G, Dorow E. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J Clin Invest. 1973;52:732–40. https://doi.org/10.1172/JCI107235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Iwata S, Ozawa K, Shimahara Y, Mori K, Kobayashi N, Kumada K, et al. Diurnal fluctuations of arterial ketone body ratio in normal subjects and patients with liver dysfunction. Gastroenterology. 1991;100:1371–8.

  25. De Gasquet P, Griglio S, Pequignot-Planche E, Malewiak MI. Diurnal changes in plasma and liver lipids and lipoprotein lipase activity in heart and adipose tissue in rats fed a high and low fat diet. J Nutr. 1977;107:199–212.

    Article  PubMed  Google Scholar 

  26. Chavan R, Feillet C, Costa SSF, Delorme JE, Okabe T, Ripperger JA, et al. Liver-derived ketone bodies are necessary for food anticipation. Nat Commun. 2016;7:1–10. https://doi.org/10.1038/ncomms10580.

  27. Ang JE, Revell V, Mann A, Mantele S, Otway DT, Johnston JD, et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int. 2012;29(7):868–81. https://doi.org/10.3109/07420528.2012.699122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci. 2012;109:2625–9. https://doi.org/10.1073/pnas.1114410109.

    Article  PubMed  Google Scholar 

  29. Van Den Berg R, Mook-Kanamori DO, Donga E, Van Dijk M, Van Dijk JG, Lammers GJ, et al. A single night of sleep curtailment increases plasma acylcarnitines: novel insights in the relationship between sleep and insulin resistance. Arch Biochem Biophys. 2016;589:145–51. https://doi.org/10.1016/j.abb.2015.09.017.

    Article  PubMed  CAS  Google Scholar 

  30. • Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci. 2013;33(36):14288–300. https://doi.org/10.1523/JNEUROSCI.5102-12.2013. Using translating ribosome affinity purification (TRAP) technology combined with microarray analysis, this study generated cell-type specific transcriptomic profiles of oligodendrocytes after longer periods of sleep, wake, or acute sleep deprivation. They show that genes involved in phospholipid synthesis and myelination or promoting OPC proliferation are transcribed preferentially during sleep, and experimentally validate some of their findings.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Poduslo SE, Miller K. Ketone bodies as precursors for lipid synthesis in neurons, astrocytes, and oligodendroglia (myelin) in hyperthyroidism, hyperketonemia and hypoketonemia. Neurochem Int. 1991;18(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  32. Feneberg R, Sparber M, Veldhuis JD, Mehls O, Ritz E, Schaefer F. Synchronous fluctuations of blood insulin and lactate concentrations in humans. J Clin Endocrinol Metab. 1999;84(1):220–7. https://doi.org/10.1210/jcem.84.1.5377.

    Article  PubMed  CAS  Google Scholar 

  33. Netchiporouk L, Shram N, Salvert D, Cespuglio R. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur J Neurosci. 2001;13(7):1429–34.

    Article  PubMed  CAS  Google Scholar 

  34. Van den Noort S, Brine K. Effect of sleep on brain labile phosphates and metabolic rate. Am J Phys. 1970;218(5):1434–9.

    Google Scholar 

  35. Dash MB, Bellesi M, Tononi G, Cirelli C. Sleep/wake dependent changes in cortical glucose concentrations. J Neurochem. 2013;124(1):79–89. https://doi.org/10.1111/jnc.12063.

    Article  PubMed  CAS  Google Scholar 

  36. Cespuglio R, Netchiporouk L, Glucose SN. Lactate monitoring across the rat sleep–wake cycle. In: Marinesco S, Dale N, editors. Microelectrode Biosensors. Totowa, NJ: Humana Press; 2013. p. 241–56.

    Chapter  Google Scholar 

  37. Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, et al. Lactate as a biomarker for sleep. Sleep. 2012;35(9):1209–22. https://doi.org/10.5665/sleep.2072.

  38. McNay EC, Fries TM, Gold PE. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci U S A. 2000;97(6):2881–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab. 2007;27(5):1055–63. https://doi.org/10.1038/sj.jcbfm.9600401.

    Article  PubMed  CAS  Google Scholar 

  40. Merboldt KD, Bruhn H, Hanicke W, Michaelis T, Frahm J. Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med. 1992;25(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  41. Clegern WC, Moore ME, Schmidt MA, Wisor J. Simultaneous electroencephalography, real-time measurement of lactate concentration and optogenetic manipulation of neuronal activity in the rodent cerebral cortex. J Vis Exp. 2012;70:e4328. https://doi.org/10.3791/4328.

    Article  CAS  Google Scholar 

  42. Shram N, Netchiporouk L, Cespuglio R. Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states. Eur J Neurosci. 2002;16(3):461–6.

    Article  PubMed  Google Scholar 

  43. Rempe MJ, Wisor JP. Cerebral lactate dynamics across sleep/wake cycles. Front Comput Neurosci. 2014;8:174. https://doi.org/10.3389/fncom.2014.00174.

    Article  PubMed  Google Scholar 

  44. Dash MB, Tononi G, Cirelli C. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep. 2012;35(7):909–19. https://doi.org/10.5665/sleep.1950.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Richter D, Dawson RM. Brain metabolism in emotional excitement and in sleep. Am J Phys. 1948;154(1):73–9.

    CAS  Google Scholar 

  46. Lin Y, Stephenson MC, Xin L, Napolitano A, Morris PG. Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. J Cereb Blood Flow Metab. 2012;32(8):1484–95. https://doi.org/10.1038/jcbfm.2012.33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Urrila AS, Hakkarainen A, Heikkinen S, Vuori K, Stenberg D, Hakkinen AM, et al. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J Cereb Blood Flow Metab. 2003;23(8):942–8. https://doi.org/10.1097/01.WCB.0000080652.64357.1D.

    Article  PubMed  CAS  Google Scholar 

  48. Frahm J, Kruger G, Merboldt KD, Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996;35(2):143–8.

    Article  PubMed  CAS  Google Scholar 

  49. Frahm J, Krueger G, Merboldt KD, Kleinschmidt A. Dynamic NMR studies of perfusion and oxidative metabolism during focal brain activation. Advances in Experimental Medicine and Biology. 1997;413:195–203.

    Article  PubMed  CAS  Google Scholar 

  50. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991;88(13):5829–31.

  51. Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992;12(4):584–92.

    Article  PubMed  CAS  Google Scholar 

  52. •• Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci. 2012;32(36):12506–17. https://doi.org/10.1523/JNEUROSCI.2306-12.2012. This is the only study that have investigated how sleep deprivation affects the mouse cortex metabolome. Based on results of this study and from stimulation of neuronal cell cultures, the authors suggest that sleep might play a major role in reestablishing the neuronal membrane homeostasis.

  53. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. J Neurosci. 2010;30(26):9007–16. https://doi.org/10.1523/jneurosci.1423-10.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, et al. Cerebral glucose utilization during stage 2 sleep in man. Brain Res. 1992;571(1):149–53.

  55. Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci. 1989;45(15):1349–56.

  56. Franck G, Salmon E, Poirrier R, Sadzot B, Franco G. Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography. Rev Electroencephalogr Neurophysiol Clin. 1987;17(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  57. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 1990;513(1):136–43.

  58. Kennedy C, Gillin JC, Mendelson W, Suda S, Miyaoka M, Ito M, et al. Local cerebral glucose utilization in non-rapid eye movement sleep. Nature. 1982;297(5864):325–7.

  59. Ramm P, Frost BJ. Cerebral and local cerebral metabolism in the cat during slow wave and REM sleep. Brain Res. 1986;365(1):112–24.

    Article  PubMed  CAS  Google Scholar 

  60. Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K. Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res. 1985;327(1–2):362–6.

    Article  PubMed  CAS  Google Scholar 

  61. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.

    Article  PubMed  CAS  Google Scholar 

  62. Madsen PL, Schmidt JF, Wildschiodtz G, Friberg L, Holm S, Vorstrup S, et al. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol (Bethesda, Md: 1985). 1991;70(6):2597–601.

    Article  CAS  Google Scholar 

  63. Madsen PL, Schmidt JF, Holm S, Vorstrup S, Lassen NA, Wildschiodtz G. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2). Brain Res. 1991;557(1–2):217–20.

    Article  PubMed  CAS  Google Scholar 

  64. Mangold R, Sokoloff L, Conner E, Kleinerman J, Therman PO, Kety SS. The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men. J Clin Invest. 1955;34(7, Part 1):1092–100. https://doi.org/10.1172/jci103158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Roland PE, Eriksson L, Stone-Elander S, Widen L. Does mental activity change the oxidative metabolism of the brain? J Neurosci. 1987;7(8):2373–89.

    PubMed  CAS  Google Scholar 

  67. •• Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 2004;41(1):35–43. Using microarray technology, a neat experimental design and clever contextual integration, this study shows that ~10% of transcripts in the rat cerebral cortex are differentially expressed between day and night and that half of these are modulated by sleep and wakefulness independent of circadian rythms.

    Article  PubMed  CAS  Google Scholar 

  68. Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol. 2015;13:66. https://doi.org/10.1186/s12915-015-0176-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of Caveolae-mediated transcytosis. Neuron. 2017;94(3):581–94 e5. https://doi.org/10.1016/j.neuron.2017.03.043.

  70. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60. https://doi.org/10.1016/j.cmet.2012.04.019.

  71. Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. 2016;113(12):E1673–82. https://doi.org/10.1073/pnas.1519650113.

  72. Hertz L, Dienel GA. Energy metabolism in the brain. Int Rev Neurobiol. 2002;51:1–102.

    Article  PubMed  CAS  Google Scholar 

  73. Boyle PJ, Scott JC, Krentz AJ, Nagy RJ, Comstock E, Hoffman C. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Investig. 1994;93:529–35. https://doi.org/10.1172/JCI117003.

    Article  PubMed  CAS  Google Scholar 

  74. Bailey SM, Udoh US, Young ME. Circadian regulation of metabolism. J Endocrinol. 2014;222(2):R75–96. https://doi.org/10.1530/JOE-14-0200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Broussard JL, Chapotot F, Abraham V, Day A, Delebecque F, Whitmore HR, et al. Sleep restriction increases free fatty acids in healthy men. Diabetologia. 2015;58(4):791–8. https://doi.org/10.1007/s00125-015-3500-4.

  76. Clarke DD, Sokoloff L. Basic neurochemistry. In: Agranoff BW, Fisher RW, Uhler MD, editors. Siegel GJ. Philadelphia: Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  77. Courtice FC. The metabolism of the brain. J Neurol Psychiatry. 1940;3(4):306–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Siesjo DP. Brain energy metabolism. New York: Wiley; 1978.

    Google Scholar 

  79. Chute AL, Smyth DH. Metabolism of the isolated perfused cat’s brain. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 1939;29(4):379–94. https://doi.org/10.1113/expphysiol.1939.sp000816.

    Article  Google Scholar 

  80. Himwich HE, Nahum LH. The respiratory quotient of the brain. American Journal of Physiology-Legacy Content. 1932;101(3):446–53. https://doi.org/10.1152/ajplegacy.1932.101.3.446.

    Article  CAS  Google Scholar 

  81. Kerpel-Fronius S. Discussion. In: Wolstenholme GEW, editor. Somatic stability in the newly born. London: J. & a. Churchill LTD; 1961. p. 73.

    Google Scholar 

  82. Edmond J. Energy metabolism in developing brain cells. Can J Physiol Pharmacol. 1992;70(Suppl):S118–29.

    Article  PubMed  CAS  Google Scholar 

  83. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32(7):1107–38. https://doi.org/10.1038/jcbfm.2011.175.

    Article  PubMed  CAS  Google Scholar 

  84. Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem. 2016;138(1):14–52. https://doi.org/10.1111/jnc.13630.

    Article  PubMed  CAS  Google Scholar 

  85. DiNuzzo M, Giove F, Maraviglia B, Mangia S. Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus. Neurochem Res. 2015;40:2493–504. https://doi.org/10.1007/s11064-015-1656-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2016;37:2112–24. https://doi.org/10.1177/0271678x16661202.

  87. Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci. 2002;22(13):5581–7. doi:20026500.

    Article  PubMed  CAS  Google Scholar 

  88. DiNuzzo M, Giove F. Activity-dependent energy budget for neocortical signaling: effect of short-term synaptic plasticity on the energy expended by spiking and synaptic activity. J Neurosci Res. 2012;90(11):2094–102. https://doi.org/10.1002/jnr.23098.

    Article  PubMed  CAS  Google Scholar 

  89. Rey G, Valekunja UK, Feeney KA, Wulund L, Milev NB, Stangherlin A, et al. The pentose phosphate pathway regulates the circadian clock. Cell Metab. 2016;24(3):462–73. https://doi.org/10.1016/j.cmet.2016.07.024.

  90. Ramm P, Smith CT. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol Behav. 1990;48(5):749–53. https://doi.org/10.1016/0031-9384(90)90220-X.

    Article  PubMed  CAS  Google Scholar 

  91. Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE, Naidoo N, et al. Macromolecule biosynthesis: a key function of sleep. Physiol Genomics. 2007;31(3):441–57. https://doi.org/10.1152/physiolgenomics.00275.2006.

  92. Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci. 2013;7:224. https://doi.org/10.3389/fnbeh.2013.00224.

    Article  PubMed  Google Scholar 

  93. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, et al. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol. 2012;22(8):676–82. https://doi.org/10.1016/j.cub.2012.02.016.

  94. Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23:5928–35.

    Article  PubMed  CAS  Google Scholar 

  95. •• Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49:1507–14. Building on knowlegde from prior in vitro studies, this study shows that intravenously injected [14C]palmitate into awake rats are taken up by the brain in vivo, about 50% undergo beta-oxidation and are temporally incoorporated into aqueous metabolite pools. The rest is incoorporated into stable lipid and protein compartments.

  96. Gnaedinger J, Miller J. Cerebral metabolism of plasma palmitate in awake, adult rat: subcellular localization. Neurochem Res. 1988;13:21–9.

    Article  PubMed  CAS  Google Scholar 

  97. Freed LM, Wakabayashi S, Bell JM, Rapoport SI. Effect of inhibition of β-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids. Brain Res. 1994;645(1–2):41–8. https://doi.org/10.1016/0006-8993(94)91636-5.

    Article  PubMed  CAS  Google Scholar 

  98. Arai T, Wakabayashi S-i, Channing MA, Dunn BB, Der MG, Bell JM, et al. Incorporation of [1-carbon-11]palmitate in monkey brain using PET. J Nucl Med. 1995;36:2261–7.

    PubMed  CAS  Google Scholar 

  99. • Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding Ba, Virtanen K et al. Increased brain fftty acid uptake in etabolic syndrome. 2010;59. https://doi.org/10.2337/db09-0138. Using positron emission tomography (PE) this study shows that [ 11 C]-palmitate and [ 18 F]fluoro-6-thia-heptadecanoic acid are taken up by the human brain primarily in gray matter regions.

  100. Frohnert BI, Jacobs DR Jr, Steinberger J, Moran A, Steffen LM, Sinaiko AR. Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes. 2013;62(9):3163–9. https://doi.org/10.2337/db12-1122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Salgin B, Ong KK, Thankamony A, Emmett P, Wareham NJ, Dunger DB. Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J Clin Endocrinol Metab. 2012;97(9):3302–9. https://doi.org/10.1210/jc.2012-1428.

    Article  PubMed  CAS  Google Scholar 

  102. Seelig A. The role of size and charge for blood-brain barrier permeation of drugs and fatty acids. J Mol Neurosci. 2007;33(1):32–41.

    Article  PubMed  CAS  Google Scholar 

  103. Li W, Yang X, Zheng T, Xing S, Wu Y, Bian F, et al. TNF-alpha stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep. 2017;7:44659. https://doi.org/10.1038/srep44659.

  104. Mitchell RW, Hatch GM. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fat Acids. 2011;85(5):293–302. https://doi.org/10.1016/j.plefa.2011.04.007.

    Article  CAS  Google Scholar 

  105. Gerstner JR, Bremer QZ, Vander Heyden WM, LaVaute TM, Yin JC, Landry CF. Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain. PLoS One. 2008;3:e1631. https://doi.org/10.1371/journal.pone.0001631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. • Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554(7693):475–80. https://doi.org/10.1038/nature25739. Using single-cell transcriptomics, the Betsholtz lab have created a user-friendy open-access transcriptome database of the mouse brain vasculature zonation: www.betsholtzlab.org/VascularSingleCells/database.html .

    Article  PubMed  CAS  Google Scholar 

  107. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987;18(4):551–61. https://doi.org/10.1002/jnr.490180407.

    Article  PubMed  CAS  Google Scholar 

  108. Auestad N, Korsak RA, Morrow JW, Edmond J. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem. 1991;56(4):1376–86.

    Article  PubMed  CAS  Google Scholar 

  109. Jernberg JN, Bowman CE, Wolfgang MJ, Scafidi S. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem. 2017;142(3):407–19. https://doi.org/10.1111/jnc.14072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305. https://doi.org/10.1194/jlr.M009449.

  111. Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 2017;26(3):523–38 e5. https://doi.org/10.1016/j.cmet.2017.08.015.

  112. Vancura P, Wolloscheck T, Baba K, Tosini G, Iuvone PM, Spessert R. Circadian and dopaminergic regulation of fatty acid oxidation pathway genes in retina and photoreceptor cells. PLoS One. 2016;11(10):e0164665. https://doi.org/10.1371/journal.pone.0164665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A. 2014;111(29):10761–6. https://doi.org/10.1073/pnas.1402663111.

  114. Ishii-Iwamoto EL, Ferrarese MLL, Constantin J, Salgueiro-Pagadigorria C, Bracht A. Effects of norepinephrine on the metabolism of fatty acid with different chain lengths in the perfused rat liver. Mol Cell Biochem. 2000;205:13–23.

    Article  PubMed  CAS  Google Scholar 

  115. Chang MC, Wakabayashi S, Bell JM. The effect of methyl palmoxirate on incorporation of [U-14C] palmitate into rat brain. Neurochem Res. 1994;19(9):1217–23.

    Article  PubMed  CAS  Google Scholar 

  116. Sherpa AD, Xiao F, Joseph N, Aoki C, Hrabetova S. Activation of beta-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse. 2016;70(8):307–16. https://doi.org/10.1002/syn.21908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci. 2017;37(21):5263–73. https://doi.org/10.1523/jneurosci.3981-16.2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Schonfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33(10):1493–9. https://doi.org/10.1038/jcbfm.2013.128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Laranjeira A, Schulz J, Dotti CG. Genes related to fatty acid beta-oxidation play a role in the functional decline of the Drosophila brain with age. PLoS One. 2016;11(8):e0161143. https://doi.org/10.1371/journal.pone.0161143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wong-Riley M. What is the meaning of the ATP surge during sleep? Sleep. 2011;34(7):833–4. https://doi.org/10.5665/sleep.1102.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 2017;21(1):1–9. https://doi.org/10.1016/j.celrep.2017.09.026.

  122. Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57(6):943–54. https://doi.org/10.1194/jlr.R067629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nomura T, Iguchi A, Sakamoto N, Harris RA. Effects of octanoate and acetate upon hepatic glycolysis and lipogenesis. Biochim Biophys Acta. 1983;754(3):315–20.

    Article  PubMed  CAS  Google Scholar 

  124. Morand C, Besson C, Demigne C, Remesy C. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats. Arch Biochem Biophys. 1994;309(2):254–60. https://doi.org/10.1006/abbi.1994.1110.

    Article  PubMed  CAS  Google Scholar 

  125. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol. 2009;11(6):747–52. https://doi.org/10.1038/ncb1881.

    Article  PubMed  CAS  Google Scholar 

  126. Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L, Lefebvre G, et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J. 2016;30(5):1913–26. https://doi.org/10.1096/fj.201500182.

    Article  PubMed  CAS  Google Scholar 

  127. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x.

    Article  PubMed  CAS  Google Scholar 

  128. Chowdhury GMI, Jiang L, Rothman DL, Behar KL. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J Cereb Blood Flow Metab. 2014;34(7):1233–42. https://doi.org/10.1038/jcbfm.2014.77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Le Foll C, Levin BE. Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):R1186–92. https://doi.org/10.1152/ajpregu.00113.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Guzman M, Blazquez C. Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab. 2001;12(4):169–73.

    Article  PubMed  CAS  Google Scholar 

  131. Ruderman NB, Ross PS, Berger M, Goodman MN. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J. 1974;138(1):1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, et al. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Phys. 1996;270(5 Pt 1):E746–51. https://doi.org/10.1152/ajpendo.1996.270.5.E746.

  133. Rogawski MA, Loscher W, Rho JM. Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb Perspect Med. 2016;6(5) https://doi.org/10.1101/cshperspect.a022780.

  134. • Chikahisa S, Shimizu N, Shiuchi T, Sei H. Ketone body metabolism and sleep homeostasis in mice. Neuropharmacology. 2014;79:399–404. https://doi.org/10.1016/j.neuropharm.2013.12.009. This work shows how ketone bodies injected in to the cerebral spinal fluid influence sleep/wake states.

    Article  PubMed  CAS  Google Scholar 

  135. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, et al. Metabolic control of vesicular glutamate transport and release. Neuron. 2010;68(1):99–112. https://doi.org/10.1016/j.neuron.2010.09.002.

  136. • Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci. 2009;29(3):620–9. https://doi.org/10.1523/jneurosci.5486-08.2009. This study reports the glutamate concentration in two cortical areas of freely behaving rats, recorded with high temporal resolution simultaneously with local field potentials (LFPs) and electroencephalograms (EEGs) from the contralateral cortex. They show that the concentration of glutamate varies as a function of behavioral state.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zimmerman JE, Chan MT, Lenz OT, Keenan BT, Maislin G, Pack AI. Glutamate is a wake-active neurotransmitter in Drosophila melanogaster. Sleep. 2017;40(2). https://doi.org/10.1093/sleep/zsw046.

  138. Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):42–52. https://doi.org/10.1016/j.tem.2013.09.002.

    Article  PubMed  CAS  Google Scholar 

  139. Fu SP, Wang JF, Xue WJ, Liu HM, Liu BR, Zeng YL, et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation. 2015;12:9. https://doi.org/10.1186/s12974-014-0230-3.

  140. Nohr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 2015;290:126–37. https://doi.org/10.1016/j.neuroscience.2015.01.040.

    Article  PubMed  CAS  Google Scholar 

  141. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108(19):8030–5. https://doi.org/10.1073/pnas.1016088108.

  142. Trinder J, Kleiman J, Carrington M, Smith S, Breen S, Tan N, et al. Autonomic activity during human sleep as a function of time and sleep stage. J Sleep Res. 2001;10(4):253–64.

  143. Kessler G, Friedman J. Metabolism of fatty acids and glucose. Circulation. 1998;98(13):1350a-3. https://doi.org/10.1161/01.CIR.98.13.1350.a.

    Article  Google Scholar 

  144. Mellanby K. Metabolic water and desiccation. Nature. 1942;150:21. https://doi.org/10.1038/150021a0.

    Article  Google Scholar 

  145. Roomets E, Lundbom N, Pihko H, Heikkinen S, Tyni T. Lipids detected by brain MRS during coma caused by carnitine palmitoyltransferase 1 deficiency. Neurology. 2006;67(8):1516–7. https://doi.org/10.1212/01.wnl.0000240118.82937.ed.

    Article  PubMed  CAS  Google Scholar 

  146. • Schulz JG, Laranjeira A, Van Huffel L, Gartner A, Vilain S, Bastianen J, et al. Glial beta-oxidation regulates Drosophila energy metabolism. Sci Rep. 2015;5:7805. https://doi.org/10.1038/srep07805. Using Drosophila as a model organism, this is the first study showing that glial fatty acid beta-oxidation is important for energy-homeostasis and prevention of triacylglycerol build-up.

  147. Bazinet RP, Laye S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15(12):771–85. https://doi.org/10.1038/nrn3820.

    Article  PubMed  CAS  Google Scholar 

  148. Watson BO, Levenstein D, Greene JP, Gelinas JN, Buzsaki G. Network homeostasis and state dynamics of neocortical sleep. Neuron. 2016;90(4):839–52. https://doi.org/10.1016/j.neuron.2016.03.036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun. 2017;8:15499. https://doi.org/10.1038/ncomms15499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Miyagawa T, Miyadera H, Tanaka S, Kawashima M, Shimada M, Honda Y, et al. Abnormally low serum acylcarnitine levels in narcolepsy patients. Sleep. 2011;34:349–53A.

  151. Miyagawa T, Kawamura H, Obuchi M, Ikesaki A, Ozaki A, Tokunaga K, et al. Effects of oral l-carnitine administration in narcolepsy patients: a randomized, double-blind, cross-over and placebo-controlled trial. PLoS One. 2013;8(1):e53707. https://doi.org/10.1371/journal.pone.0053707.

  152. Tafti M, Petit B, Chollet D, Neidhart E, de Bilbao F, Kiss JZ, et al. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat Genet. 2003;34:320–5. https://doi.org/10.1038/ng1174.

  153. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. •• Knobloch M, Pilz GA, Ghesquiere B, Kovacs WJ, Wegleiter T, Moore DL, et al. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep. 2017;20(9):2144–55. https://doi.org/10.1016/j.celrep.2017.08.029. The first study to show how fatty acid oxidation capacity changes the state and function of cell types in the mouse brain. Inhibition of fatty acid oxidation by increased malonyl-CoA levels shifts quiescents neural stem cells to become proliferative.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lamers JM, Stinis HT, Montfoort A, Hulsmann WC. The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ / K+)-ATPase of cardiac sarcolemma. A possible role in myocardial ischemia. Biochim Biophys Acta. 1984;774(1):127–37.

    Article  PubMed  CAS  Google Scholar 

  156. Nałȩcz KA, Miecz D, Berezowski V, Cecchelli R. Carnitine: transport and physiological functions in the brain. Mol Asp Med. 2004;25:551–67. https://doi.org/10.1016/j.mam.2004.06.001.

    Article  CAS  Google Scholar 

  157. Schonfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta. 2007;1767(8):1032–40. https://doi.org/10.1016/j.bbabio.2007.04.005.

    Article  PubMed  CAS  Google Scholar 

  158. Mailloux RJ, McBride SL, Harper ME. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 2013;38(12):592–602. https://doi.org/10.1016/j.tibs.2013.09.001.

    Article  PubMed  CAS  Google Scholar 

  159. •• Díaz-Muñoz M, Hernández-Muñoz R, Suárez J, de Sánchez VC. Day-night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the gperoxide dismutase activity. Neuroscience. 1985;16:859–63. https://doi.org/10.1016/0306-4522(85)90100-9. This study measures the state of lipoperoxidation, glutathione cycle components and superoxide dismutase activity every four hour in the the cerebral cortex of the rat, and shows that these parameters exhibit day-night rhythms.

    Article  PubMed  Google Scholar 

  160. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62(6):649–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Giovanni Coppola and Daniel Nachun, University of California, Los Angeles who performed the bioinformatics analysis of the sleep/wake transcriptome data (referred to as “unpublished observations”). We also thank Nanna Goldman for her help in collecting the sleep/wake samples and performing RNA isolation and initial qPCR verification. Finally, we thank Paul Cumming for comments to the manuscript.

Funding

Nadia Aalling is funded by the Lundbeck Foundation PhD scholarship, R180-2014-4003. As reported by Mauro DiNuzzo, this study is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 701635. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Lundbeck Foundation or European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro DiNuzzo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with animals performed by the authors complied with all applicable ethical standards (including institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalling, N.N., Nedergaard, M. & DiNuzzo, M. Cerebral Metabolic Changes During Sleep. Curr Neurol Neurosci Rep 18, 57 (2018). https://doi.org/10.1007/s11910-018-0868-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0868-9

Keywords

Navigation