Skip to main content

Advertisement

Log in

Molecular Therapies for Tuberous Sclerosis and Neurofibromatosis

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neurofibromatosis type 1 (NF1) and tuberous sclerosis complex (TSC) are autosomal-dominant genetic disorders that result from dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. NF1 is caused by mutations in the NF1 gene on chromosome 17q11.2. Its protein product, neurofibromin, functions as a tumor suppressor and ultimately produces constitutive upregulation of mTOR. TSC is caused by mutations in either the TSC1 (chromosome 9q34) or TSC2 (chromosome 16p.13.3) genes. Their protein products, hamartin and tuberin, respectively, form a dimer that acts via the GAP protein Rheb (Ras homolog enhanced in brain) to directly inhibit mTOR, again resulting in upregulation. Specific inhibitors of mTOR are in clinical use, including sirolimus, everolimus, temsirolimus, and deforolimus. Everolimus has been shown to reduce the volume and appearance of subependymal giant cell astrocytomas (SEGA), facial angiofibromas, and renal angiomyolipomas associated with TSC, with a recent FDA approval for SEGA not suitable for surgical resection. This article reviews the use of mTOR inhibitors in these diseases, which have the potential to be a disease-modifying therapy in these and other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.

    Article  PubMed  CAS  Google Scholar 

  2. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD, et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14(12):2223–33.

    Article  PubMed  CAS  Google Scholar 

  3. Rechnitzer C. Increased survival of children with solid tumours: how did we get there and how to keep the success going? Canc Imag. 2011;11:865–9.

    Google Scholar 

  4. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, et al. SEER Cancer Statistics Review, 1975–2008. National Cancer Institute, Bethesda, MD; 2010.

  5. Stoddart A, Fleming HE, Paige CJ. The role of the preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development. Immunol Rev. 2000;175:47–58.

    Article  PubMed  CAS  Google Scholar 

  6. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24):8573–8.

    Article  PubMed  CAS  Google Scholar 

  7. Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60.

    Article  PubMed  CAS  Google Scholar 

  8. Perry B, Banyard J, McLaughlin ER, Watnick R, Sohn A, Brindley DN, et al. AKT1 overexpression in endothelial cells leads to the development of cutaneous vascular malformations in vivo. Arch Dermatol. 2007;143(4):504–6.

    Article  PubMed  Google Scholar 

  9. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  PubMed  CAS  Google Scholar 

  10. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69(8):3520–8.

    Article  PubMed  CAS  Google Scholar 

  11. Houghton PJ, Huang S. mTOR as a target for cancer therapy. Curr Top Microbiol Immunol. 2004;279:339–59.

    Article  PubMed  CAS  Google Scholar 

  12. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5):335–48.

    Article  PubMed  CAS  Google Scholar 

  13. Bhaskar PT, Hay N. The two TORCs and Akt. Developmental Cell. 2007;12(4):487–502.

    Article  PubMed  CAS  Google Scholar 

  14. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  PubMed  CAS  Google Scholar 

  15. Korf BR. Malignancy in neurofibromatosis type 1. Oncologist. 2000;5(6):477–85.

    Article  PubMed  CAS  Google Scholar 

  16. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van RN, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat. 2000;15(6):541–55.

    Article  PubMed  CAS  Google Scholar 

  17. US Department of Health and Human Services, National Institutes of Health. Neurofibromatosis. NIH Consens Statement Online 1987 Jul 13–15;6(12):1–19.

  18. Korf BR. Plexiform neurofibromas. Am J Med Genet. 1999;89(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  19. Carli M, Ferrari A, Mattke A, et al. Pediatric malignant peripheral nerve sheath tumor: The Italian and German soft tissue sarcoma cooperative group. J Clin Oncol. 2005;23:8422–30.

    Article  PubMed  Google Scholar 

  20. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis. J Mol Genet. 2002;39:311–4.

    CAS  Google Scholar 

  21. Needle MN, Cnaan A, Dattilo J, Chatten J, Phillips PC, Shochat S, et al. Prognostic signs in the surgical management of plexiform neurofibroma: the Children's Hospital of Philadelphia experience, 1974–1994. J Pediatr. 1997;131(5):678–82.

    Article  PubMed  CAS  Google Scholar 

  22. Huson SM, Harper PS, Compston DA. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain. 1988;111(Pt 6):1355–81.

    Article  PubMed  Google Scholar 

  23. Ricardi VM, Eichner JE. Neurofibromitosis: phenotype, natural history and pathogenesis. Baltimore: Johns Hopkins University Press; 1986.

    Google Scholar 

  24. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet. 2001;68(5):1110–8.

    Article  PubMed  CAS  Google Scholar 

  25. Solomon J, Warren K, Dombi E, et al. Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput Med Imag Graph. 2004;28:257–65.

    Article  Google Scholar 

  26. Gupta A, Cohen BH, Ruggieri P, Packer RJ, Phillips PC. Phase I study of thalidomide for the treatment of plexiform neurofibroma in neurofibromatosis 1. Neurology. 2003;60(1):130–2.

    PubMed  CAS  Google Scholar 

  27. Widemann BC, Salzer WL, Arceci RJ, Blaney SM, Fox E, End D, et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24(3):507–16.

    Article  PubMed  CAS  Google Scholar 

  28. Babovic-Vuksanovic D, Widemann BC, Dombi E, Gillespie A, Wolters PL, Toledo-Tamula MA, et al. Phase I trial of pirfenidone in children with neurofibromatosis 1 and plexiform neurofibromas. Pediatr Neurol. 2007;36(5):293–300.

    Article  PubMed  Google Scholar 

  29. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–56.

    Article  PubMed  CAS  Google Scholar 

  30. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):657–68.

    Article  PubMed  CAS  Google Scholar 

  31. Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics. 2010;41(5):199–208.

    Article  PubMed  CAS  Google Scholar 

  32. Baskin Jr HJ. The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol. 2008;38(9):936–52.

    Article  PubMed  Google Scholar 

  33. Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype: phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet. 2005;13(6):731–41.

    Article  PubMed  CAS  Google Scholar 

  34. Anlauf M, Garbrecht N, Bauersfeld J, Schmitt A, Henopp T, Komminoth P, et al. Hereditary neuroendocrine tumors of the gastroenteropancreatic system. Virchows Arch. 2007;451 Suppl 1:S29–38.

    Article  PubMed  Google Scholar 

  35. Holmes GL, Stafstrom CE. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia. 2007;48(4):617–30.

    Article  PubMed  Google Scholar 

  36. Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13(12):624–8.

    Article  PubMed  CAS  Google Scholar 

  37. Mete O, van der Kwast TH. Epithelioid angiomyolipoma: a morphologically distinct variant that mimics a variety of intra-abdominal neoplasms. Arch Pathol Lab Med. 2011;135(5):665–70.

    PubMed  Google Scholar 

  38. Martignoni G, Pea M, Reghellin D, Zamboni G, Bonetti F. PEComas: the past, the present and the future. Virchows Archive. 2008;452(2):119–32.

    Article  Google Scholar 

  39. Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet. 2005;14(2):R251–8.

    Article  PubMed  CAS  Google Scholar 

  40. Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia. 2008;49(1):8–21.

    Article  PubMed  Google Scholar 

  41. Major P, Rakowski S, Simon MV, Cheng ML, Eskandar E, Baron J, et al. Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia. 2009;50(1):147–54.

    Article  PubMed  Google Scholar 

  42. Weiner HL, Ferraris N, LaJoie J, Miles D, Devinsky O. Epilepsy surgery for children with tuberous sclerosis complex. J Child Neurol. 2004;19(9):687–9.

    PubMed  Google Scholar 

  43. Kopp CM, Muzykewicz DA, Staley BA, Thiele EA, Pulsifer MB. Behavior problems in children with tuberous sclerosis complex and parental stress. Epilepsy Behavior. 2008;13(3):505–10.

    Article  PubMed  Google Scholar 

  44. Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology. 2004;63(8):1457–61.

    PubMed  Google Scholar 

  45. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol. 2009;16(6):691–6.

    Article  PubMed  CAS  Google Scholar 

  46. Prather P, de Vries PJ. Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol. 2004;19(9):666–74.

    PubMed  Google Scholar 

  47. Thiele EA. Managing epilepsy in tuberous sclerosis complex. J Child Neurol. 2004;19(9):680–6.

    PubMed  Google Scholar 

  48. Tsao CY. Current trends in the treatment of infantile spasms. Neuropsychiatric Diseases and Treatment. 2009;5:289–99.

    Article  CAS  Google Scholar 

  49. Ehninger D, de Vries PJ, Silva AJ. From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. J Intellect Disabil Res. 2009;53(10):838–51.

    Article  PubMed  CAS  Google Scholar 

  50. D'Agati E, Moavero R, Cerminara C, Curatolo P. Attention-deficit hyperactivity disorder (ADHD) and tuberous sclerosis complex. J Child Neurol. 2009;24(10):1282–7.

    Article  PubMed  Google Scholar 

  51. Winterkorn EB, Pulsifer MB, Thiele EA. Cognitive prognosis of patients with tuberous sclerosis complex. Neurology. 2007;68(1):62–4.

    Article  PubMed  Google Scholar 

  52. Johnson SR. Lymphangioleiomyomatosis. Eur Respir J. 2006;27(5):1056–65.

    PubMed  CAS  Google Scholar 

  53. Yates JR. Tuberous sclerosis. Eur J Hum Genet. 2006;14(10):1065–73.

    Article  PubMed  CAS  Google Scholar 

  54. Franz DN. Non-neurologic manifestations of tuberous sclerosis complex. J Child Neurol. 2004;19(9):690–8.

    PubMed  Google Scholar 

  55. Sooriakumaran P, Gibbs P, Coughlin G, Attard V, Elmslie F, Kingswood C, et al. Angiomyolipomata: challenges, solutions, and future prospects based on over 100 cases treated. BJU Int. 2010;105(1):101–6.

    Article  PubMed  Google Scholar 

  56. McCormack FX. Lymphangioleiomyomatosis: a clinical update. Chest. 2008;133(2):507–16.

    Article  PubMed  CAS  Google Scholar 

  57. Jozwiak J, Jozwiak S, Oldak M. Molecular activity of sirolimus and its possible application in tuberous sclerosis treatment. Med Res Rev. 2006;26(2):160–80.

    Article  PubMed  CAS  Google Scholar 

  58. Isaacs H. Perinatal (fetal and neonatal) tuberous sclerosis: a review. Am J Perinatol. 2009;26(10):755–60.

    Article  PubMed  Google Scholar 

  59. Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18(1):56–62.

    Article  PubMed  CAS  Google Scholar 

  60. Napolioni V, Curatolo P. Genetics and molecular biology of tuberous sclerosis complex. Curr Genom. 2008;9(7):475–87.

    Article  CAS  Google Scholar 

  61. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804(3):433–9.

    PubMed  CAS  Google Scholar 

  62. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, et al. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 2008;22(18):2485–95.

    Article  PubMed  CAS  Google Scholar 

  63. de Vries PJ, Howe CJ. The tuberous sclerosis complex proteins: a GRIPP on cognition and neurodevelopment. Trends Mol Med. 2007;13(8):319–26.

    Article  PubMed  Google Scholar 

  64. Krishnan ML, Commowick O, Jeste SS, Weisenfeld N, Hans A, Gregas MC, et al. Diffusion features of white matter in tuberous sclerosis with tractography. Pediatr Neurol. 2010;42(2):101–6.

    Article  PubMed  Google Scholar 

  65. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci. 2007;27(21):5546–58.

    Article  PubMed  CAS  Google Scholar 

  66. Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev. 2009;31(2):104–13.

    Article  PubMed  Google Scholar 

  67. Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784(1):116–32.

    PubMed  CAS  Google Scholar 

  68. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005;8(12):1727–34.

    Article  PubMed  CAS  Google Scholar 

  69. Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol. 2004;19(9):716–25.

    PubMed  Google Scholar 

  70. Moavero R, Cerminara C, Curatolo P. Epilepsy secondary to tuberous sclerosis: lessons learned and current challenges. Childs Nerv Syst. 2010;26(11):1495–504.

    Article  PubMed  Google Scholar 

  71. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med. 2008;14(8):843–8.

    Article  PubMed  CAS  Google Scholar 

  72. Sampson JR. Therapeutic targeting of mTOR in tuberous sclerosis. Biochem Soc Trans. 2009;37(Pt 1):259–64.

    Article  PubMed  CAS  Google Scholar 

  73. Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010;51(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  74. Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444–53.

    Article  PubMed  CAS  Google Scholar 

  75. Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):e24.

    Article  Google Scholar 

  76. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res. 2008;42(1–3):84–105.

    Article  PubMed  CAS  Google Scholar 

  77. Akcakanat A, Singh G, Hung MC, Meric-Bernstam F. Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun. 2007;362(2):330–3.

    Article  PubMed  CAS  Google Scholar 

  78. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68.

    Article  PubMed  CAS  Google Scholar 

  79. Zeng Z, Sarbassov DD, Samudio IJ, Yee KW, Munsell MF, Ellen JC, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2007;109(8):3509–12.

    Article  PubMed  CAS  Google Scholar 

  80. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975;28(10):727–32.

    Article  CAS  Google Scholar 

  81. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001;59(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  82. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59(3):490–8.

    Article  PubMed  CAS  Google Scholar 

  83. Krueger DA, Care MM, Holland K, Agricola A, Tudor C, Mangeshkar P, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801–11.

    Article  PubMed  CAS  Google Scholar 

  84. Afinitor® (everolimus) tablets for oral administration [prescribing information]. East Hanover, NJ: Novartis Pharmaceuticals Corp.; 2010.

  85. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):140–51.

    Article  PubMed  CAS  Google Scholar 

  86. Curatolo P, D'Argenzio L, Cerminara C, Bombardieri R. Management of epilepsy in tuberous sclerosis complex. Expert Rev Neurother. 2008;8(3):457–67.

    Article  PubMed  CAS  Google Scholar 

  87. Krueger DA, Franz DN. Current management of tuberous sclerosis complex. Paediatric Drugs. 2008;10(5):299–313.

    Article  PubMed  Google Scholar 

  88. Ess KC. Tuberous sclerosis complex: a brave new world? Curr Opin Neurol. 2010;23(2):189–93.

    Article  PubMed  Google Scholar 

  89. Jozwiak J, Sahin M, Jozwiak S, Kotulska K, Ploski R, Szperl M, et al. Cardiac rhabdomyoma in tuberous sclerosis: hyperactive Erk signaling. Int J Cardiol. 2009;132(1):145–7.

    Article  PubMed  Google Scholar 

  90. Kotulska K, Larysz-Brysz M, Grajkowska W, Jozwiak J, Wlodarski P, Sahin M, et al. Cardiac rhabdomyomas in tuberous sclerosis complex show apoptosis regulation and mTOR pathway abnormalities. Pediatr Dev Pathol. 2009;12(2):89–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest: D.N. Franz: has received grant support for study drug and costs for conducting the research described in this paper, Novartis; has received a consulting fee or honorarium for conduct and design of clinical trials, Novartis; has received support for travel costs to meet with regulatory agencies, present research results, design protocols, Novartis; has received support for study medication, administrative support for study conduct, Novartis; has given expert testimony for various plaintiff's and defendant's attorneys; has received payment of travel and lodging expenses for invited lectures, not as part of a speaker's bureau; is on the speaker's bureau for UCB Pharma; B.D. Weiss: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Neal Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, D.N., Weiss, B.D. Molecular Therapies for Tuberous Sclerosis and Neurofibromatosis. Curr Neurol Neurosci Rep 12, 294–301 (2012). https://doi.org/10.1007/s11910-012-0269-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0269-4

Keywords

Navigation