Skip to main content

Advertisement

Log in

New Drugs in the Pipeline for the Treatment of HIV: a Review

  • Antimicrobial Development and Drug Resistance (A Pakyz, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper is to review therapies with new mechanisms of action for the treatment of HIV that are at least in phase 2 clinical trials.

Recent Findings

There are several new mechanisms of action being represented within clinical development, including histone deacetylase (HDAC) inhibitors, gene therapies, broadly neutralizing anti-HIV antibodies, immune modulation, and drugs with new mechanisms to block HIV entry. The new therapies are being developed for both as add-on therapy to existing combination antiretroviral therapy and as agents to be used during treatment interruption. The current drugs in development have had varying degrees of success in the early trials.

Summary

Each of these new drugs may potentially fill a void in current antiretroviral therapy (ART) therapies, which will ultimately lead to improved outcomes in HIV-infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. WHO. World Health Organization HIV/AIDS Fact Sheet [Internet]. 2017 [cited 2017 Aug 1]. Available from: http://www.who.int/mediacentre/factsheets/fs360/en/

  2. CDC. Centers for Disease Control and Prevention HIV Fact Sheet [Internet]. 2017. Available from: https://www.cdc.gov/hiv/library/factsheets/index.html

  3. Nettles RE, Schurmann D, Zhu L, Stonier M, Huang SP, Chang I, et al. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J Infect Dis. 2012;206:1002–11.

    Article  CAS  PubMed  Google Scholar 

  4. Lalezari JP, Latiff GH, Brinson C, Echevarría J, Treviño-Pérez S, Bogner JR, et al. Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial. Lancet HIV. 2015;2:e427–37.

  5. ClinicalTrials.gov. clinicaltrials.gov NCT02362503 [Internet]. 2017 [cited 2017 Jul 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT02362503

  6. Jacobson JM, Thompson MA, Lalezari JP, Saag MS, Zingman BS, D’Ambrosio P, et al. Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. J Infect Dis. 2010;201:1481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobson JM, Lalezari JP, Thompson MA, Fichtenbaum CJ, Saag MS, Zingman BS, et al. Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob Agents Chemother. 2010;54:4137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science. 2016;353:aaf6517. This article provides a concise review of strategies targeted towards HIV eradication.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Romerio F, Gabriel MN, Margolis DM. Repression of human immunodeficiency virus type 1 through the novel cooperation of human factors YY1 and LSF. J Virol. 1997;71:9375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Coull JJ, Romerio F, Sun J-M, Volker JL, Galvin KM, Davie JR, et al. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol. 2000;74:6790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He G, Margolis DM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol. 2002;22:2965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ylisastigui L, Coull JJ, Rucker VC, Melander C, Bosch RJ, Brodie SJ, et al. Polyamides reveal a role for repression in latency within resting T cells of HIV-infected donors. J Infect Dis. 2004;190:1429–37.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang G, Espeseth A, Hazuda DJ, Margolis DM. c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J. Virol. 2007;81:10914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, Tyagi M, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol. 2008;82:12291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52.

    Article  CAS  PubMed  Google Scholar 

  17. Elliott JH, Wightman F, Solomon A, Ghneim K, Ahlers J, Cameron MJ, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10:e1004473.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Archin NM, Liberty AL, Kashuba ADM, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA: Nat Publ Group; 2012;487:482–485.

  19. Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang K-H, Dahl NP, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis. 2014;210:728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ClinicalTrials.gov. ClinicalTrials.gov [Internet]. 2017 [cited 2017 Aug 22]. Available from: https://clinicaltrials.gov/ct2/results?term=vorinostat&cond=Hiv

  21. Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a histone deacetylase inhibitor, for latent virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014;1:e13–21.

    Article  PubMed  Google Scholar 

  22. ClinicalTrials.gov. clinicaltrials.gov NCT02471430 [Internet]. 2017 [cited 2017 Aug 22]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02471430

  23. Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 2015;11:1–22.

    Article  Google Scholar 

  24. Rasmussen TA, Lewin SR. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS. 2016;11:1.

    Article  Google Scholar 

  25. ClinicalTrials.gov. clinicaltrials.gov NCT01933594 [Internet]. 2017 [cited 2017 Jul 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT01933594?term=NCT01933594&rank=1

  26. ClinicalTrials.gov. clinicaltrials.gov NCT03041012 [Internet]. 2017 [cited 2017 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT03041012?term=romidepsin&cond=Hiv&rank=4

  27. Millard CJ, Watson PJ, Fairall L, Schwabe JWR. Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci Elsevier Ltd. 2017;38:363–77.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi Y, Gélinas C, Dougherty JP. Histone deacetylase inhibitors containing a benzamide functional group and a pyridyl cap are preferentially effective human immunodeficiency virus-1 latency-reversing agents in primary resting CD4+ T cells. J Gen Virol. 2017;98:799–809.

    Article  CAS  PubMed  Google Scholar 

  29. ClinicalTrials.gov. clinicaltrials.gov NCT02513901 [Internet]. 2017 [cited 2017 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02513901

  30. ClinicalTrials.gov. clinicaltrials.gov NCT02902185 [Internet]. 2016 [cited 2017 Aug 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02902185?term=NCT02902185&rank=1

  31. Khot A, Dickinson M, Prince HM. Panobinostat in lymphoid and myeloid malignancies. Expert Opin Investig Drugs. 2013;22:1211–23.

    Article  CAS  PubMed  Google Scholar 

  32. Asmuth DM, Utay NS, Pollard RB. Peginterferon 2a for the treatment of HIV infection. Expert Opin Investig Drugs Taylor & Francis. 2016;25:249–57.

    Article  CAS  PubMed  Google Scholar 

  33. Asmuth DM, Murphy RL, Rosenkranz SL, Lertora JJL, Cramer Y, Chan ES, et al. Safety, tolerability and mechanisms of antiretroviral activity of peginterferon alfa-2a in HIV-1-mono-infected subjects: a phase II clinical trial. J Infect Dis. 2010;201:1686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. ClinicalTrials.gov. clinicaltrials.gov NCT00078442 [Internet]. 2009 [cited 2017 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT00078442?term=NCT00078442&rank=1

  35. ClinicalTrials.gov. clinicaltrials.gov NCT02227277 [Internet]. 2017 [cited 2017 Aug 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02227277?term=NCT02227277&rank=1

  36. ClinicalTrials.gov. clinicaltrials.gov NCT01935089 [Internet]. 2016 [cited 2017 Aug 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT01935089?term=NCT01935089&rank=1

  37. ClinicalTrials.gov. clinicaltrial.gov NCT00125814 [Internet]. 2005 [cited 2017 Aug 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT00125814?term=NCT00125814&rank=1

  38. ClinicalTrials.gov. clinicaltrials.gov NCT00594880 [Internet]. 2015 [cited 2017 Aug 22]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00594880?term=NCT00594880&rank=1

  39. Goujard C, Emilie D, Roussillon C, Godot V, Rouzioux C, Venet A, et al. Continuous versus intermittent treatment strategies during primary HIV-1 infection. AIDS. 2012;26:1895–905.

    Article  CAS  PubMed  Google Scholar 

  40. Boué F, Reynes J, Rouzioux C, Emilie D, Souala F, Tubiana R, et al. Alpha interferon administration during structured interruptions of combination antiretroviral therapy in patients with chronic HIV-1 infection: INTERVAC ANRS 105 trial. AIDS. 2011;25:115–8.

    Article  PubMed  Google Scholar 

  41. Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 2013;207:213–22.

    Article  CAS  PubMed  Google Scholar 

  42. Rivero-Juárez A, Frias M, Rivero A. Current views on interferon therapy for HIV. Expert Opin Biol Ther Taylor & Francis. 2016;2598:1–8.

    Google Scholar 

  43. Azzoni L, Papasavvas E, Lynn K, Kapalko A, Lalley-Chareczko L, Tebas P, et al. A Feasibility study of weight-based pegylated IFN-alpha2b immunotherapy to target persistent HIV-1 on ART. Int. AIDS Soc. Annu. Meet. Vancouver, Canada; 2015. p. Poster:TUPEB297.

  44. • Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N Engl J Med. 2016;375:2019–21. This article provides a general overview of the use of broadly neutralizing antibodies for the treatment of HIV.

    Article  CAS  PubMed  Google Scholar 

  45. Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET, Petrone ME, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N Engl J Med. 2016;375:2037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol. 2015;182:289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lynch RM, Boritz E, Coates EE, Dezure A, Madden P, Costner P, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015;7:319ra206.

    Article  PubMed  Google Scholar 

  48. Scheid JF, Horwitz JA, Bar-On Y, Kreider EF, Lu C-L, Lorenzi JCC, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016;535:556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steens J-M, Scherrer D, Gineste P, Barrett PN, Khuanchai S, Winai R, et al. Safety, pharmacokinetics, and antiviral activity of a novel HIV antiviral, ABX464, in treatment-naive HIV-infected subjects in a phase 2 randomized, controlled study. Antimicrob Agents Chemother. 2017;61:1–27.

    Article  Google Scholar 

  50. Scherrer D, Rouzier R, Cardona M, Barrett PN, Steens J-M, Gineste P, et al. Food effect on pharmacokinetic parameters of ABX464 administered orally: a randomized trial in healthy male subjects. Antimicrob Agents Chemother. 2017;61:e01288–16.

    Article  CAS  PubMed  Google Scholar 

  51. Scherrer D, Rouzier R, Noel Barrett P, Steens J-M, Gineste P, Murphy RL, et al. Pharmacokinetics and tolerability of ABX464, a novel first-in-class compound to treat HIV infection, in healthy HIV-uninfected subjects. J Antimicrob Chemother. 2017;72:820–8.

    PubMed  Google Scholar 

  52. Tebas P, Stein D, Ww T, Frank I, Sq W, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeidan J, Lee GK, Benne C, Fourati S, Wang SK, Lalezari JP, et al. T-Cell Homeostasis and CD8 Responses Predict Viral Control Post SB-728-T Treatment [Internet]. Conf. Retroviruses Opportunistic Infect. 2016 [cited 2017 Aug 19]. Available from: http://www.croiconference.org/sessions/t-cell-homeostasis-and-cd8-responses-predict-viral-control-post-sb-728-t-treatment

  54. ClinicalTrials.gov. clinicaltrials.gov NCT00295477 [Internet]. 2016 [cited 2017 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT00295477?term=NCT00295477&rank=1

  55. Tebas P, Stein D, Binder-Scholl G, Mukherjee R, Brady T, Rebello T, et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood. 2013;121:1524–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaryPeace McRae.

Ethics declarations

Conflict of Interest

Drs. Gravatt, McRae, Ms. Leibrand, and Mr. Sulay declare no conflicts of interests in regard to the development of this paper.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravatt, L.A.H., Leibrand, C.R., Patel, S. et al. New Drugs in the Pipeline for the Treatment of HIV: a Review. Curr Infect Dis Rep 19, 42 (2017). https://doi.org/10.1007/s11908-017-0601-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-017-0601-x

Keywords

Navigation