Skip to main content

Advertisement

Log in

Progressive Multifocal Leukoencephalopathy in HIV-Uninfected Individuals

  • Central Nervous System Infections (K Bloch, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by the human neurotropic polyomavirus JC (JCV). The disease occurs virtually exclusively in immunocompromised individuals, and, prior to the introduction of antiretroviral therapy, was seen most commonly in the setting of HIV/AIDS. More recently, however, the incidence of PML in HIV-uninfected persons has increased with broader use of immunosuppressive and immunomodulatory medications utilized in a variety of systemic and neurologic autoimmune disorders. In this review, we discuss the epidemiology and clinical characteristics of PML in HIV-uninfected individuals, as well as diagnostic modalities and the limited treatment options. Moreover, we describe recent findings regarding the neuropathogenesis of PML, with specific focus on the unique association between PML and natalizumab, a monoclonal antibody that prevents trafficking of activated leukocytes into the CNS that is used for the treatment of multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. White MK, Khalili K. Pathogenesis of progressive multifocal leukoencephalopathy—revisited. J Infect Dis. 2011;203:578–86.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bozic C, Subramanyam M, Richman S, Plavina T, Zhang A, Ticho B. Anti-JC virus (JCV) antibody prevalence in the JCV epidemiology in MS (JEMS) trial. Eur J Neurol. 2014;21:299–304.

    Article  CAS  PubMed  Google Scholar 

  3. Miskin DP, Koralnik IJ. Novel syndromes associated with JC virus infection of neurons and meningeal cells: no longer a gray area. Curr Opin Neurol. 2015;28:288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Egli A, Infanti L, Dumoulin A, et al. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect Dis. 2009;199:837–46.

    Article  CAS  PubMed  Google Scholar 

  5. Astrom K, Mancall E, Richardson E. Progressive multifocal luekoencephalopathy: a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease. Brain. 1958;81:93–111.

    Article  CAS  PubMed  Google Scholar 

  6. Engsig FN, Hansen AB, Omland LH, et al. Incidence, clinical presentation, and outcome of progressive multifocal leukoencephalopathy in HIV-infected patients during the highly active antiretroviral therapy era: a nationwide cohort study. J Infect Dis. 2009;199:77–83.

    Article  PubMed  Google Scholar 

  7. Wollebo HS, White MK, Gordon J, Berger JR, Khalili K. Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann Neurol. 2015;77:560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Watanabe I, Preskorn SH. Virus-cell interaction in oligodendroglia, astroglia and phagocyte in progressive multifocal leukoencephalopathy. An electron microscopic study. Acta Neuropathol. 1976;36:101–15.

    Article  CAS  PubMed  Google Scholar 

  9. Frisque RJ, Bream GL, Cannella MT. Human polyomavirus JC virus genome. J Virol. 1984;51:458–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Khalili K, Gordon J, White MK. The polyomavirus, JCV and its involvement in human disease. Adv Exp Med Biol. 2006;577:274–87.

    Article  CAS  PubMed  Google Scholar 

  11. Saribas AS, Coric P, Hamazaspyan A, et al. Emerging from the unknown: structural and functional features of agnoprotein of polyomaviruses. J Cell Physiol. 2016.

  12. Yogo Y, Kitamura T, Sugimoto C, et al. Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals. J Virol. 1990;64:3139–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bofill-Mas S, Clemente-Casares P, Major EO, Curfman B, Girones R. Analysis of the excreted JC virus strains and their potential oral transmission. J Neurovirol. 2003;9:498–507.

    Article  CAS  PubMed  Google Scholar 

  14. Van Loy T, Thys K, Ryschkewitsch C, et al. JC virus quasispecies analysis reveals a complex viral population underlying progressive multifocal leukoencephalopathy and supports viral dissemination via the hematogenous route. J Virol. 2015;89:1340–7. The first analysis of the JCV population in different body compartments of individuals with PML. In addition to demonstrating complex viral populations in the CSF and plasma that are distinct from those found in the urine, the study demonstrates that archetype virus can be present in the CNS.

    Article  PubMed  CAS  Google Scholar 

  15. Gosert R, Kardas P, Major EO, Hirsch HH. Rearranged JC virus noncoding control regions found in progressive multifocal leukoencephalopathy patient samples increase virus early gene expression and replication rate. J Virol. 2010;84:10448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin-Blondel G, Bauer J, Cuvinciuc V, et al. In situ evidence of JC virus control by CD8+ T cells in PML-IRIS during HIV infection. Neurology. 2013;81:964–70.

    Article  CAS  PubMed  Google Scholar 

  17. Du Pasquier RA, Kuroda MJ, Zheng Y, Jean-Jacques J, Letvin NL, Koralnik IJ. A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain. 2004;127:1970–8.

    Article  PubMed  Google Scholar 

  18. Gheuens S, Bord E, Kesari S, et al. Role of CD4+ and CD8+ T-cell responses against JC virus in the outcome of patients with progressive multifocal leukoencephalopathy (PML) and PML with immune reconstitution inflammatory syndrome. J Virol. 2011;85:7256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jelcic I, Kempf C, Largey F, et al. Mechanisms of immune escape in central nervous system infection with neurotropic JC virus variant. Ann Neurol. 2016;79:404–18. This study demonstrated that despite strong specificity of CD8+ T cells for JCV antigens in an individual with CNS JCV persistence, mutations in the major capsid protein VP1 resulted in reduced CD4+ T cell responses which impacted CD8+ responses. Thus, efficient CD4+ T cell recognition of viral antigens is necessary to support CD8+ T cell function in combating JCV infection.

    Article  CAS  PubMed  Google Scholar 

  20. Ray U, Cinque P, Gerevini S, et al. JC polyomavirus mutants escape antibody-mediated neutralization. Sci Transl Med. 2015;7:306ra151. This provocative study found that mutations in the JCV capsid protein VP1 allow the virus to evade antibody-mediated neutralization, and suggests a role for the humoral response in containment of JCV infection.

    Article  PubMed  CAS  Google Scholar 

  21. Jelcic I, Combaluzier B, Faigle W, et al. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Sci Transl Med. 2015;7:306ra150.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berger JR, Pall L, Lanska D, Whiteman M. Progressive multifocal leukoencephalopathy in patients with HIV infection. J Neurovirol. 1998;4:59–68.

    Article  CAS  PubMed  Google Scholar 

  23. Antinori A, Ammassari A, Giancola ML, et al. Epidemiology and prognosis of AIDS-associated progressive multifocal leukoencephalopathy in the HAART era. J Neurovirol. 2001;7:323–8.

    Article  CAS  PubMed  Google Scholar 

  24. Isidoro L, Pires P, Rito L, Cordeiro G. Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. 2014;2014.

  25. Martin SI, Marty FM, Fiumara K, Treon SP, Gribben JG, Baden LR. Infectious complications associated with alemtuzumab use for lymphoproliferative disorders. Clin Infect Dis. 2006;43:16–24.

    Article  CAS  PubMed  Google Scholar 

  26. Klintmalm GB, Feng S, Lake JR, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14:1817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dammeier N, Schubert V, Hauser TK, Bornemann A, Bischof F. Case report of a patient with progressive multifocal leukoencephalopathy under treatment with dimethyl fumarate. BMC Neurol. 2015;15:108.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med. 2015;372:1476–8.

    Article  CAS  PubMed  Google Scholar 

  29. Nieuwkamp DJ, Murk JL, van Oosten BW, et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N Engl J Med. 2015;372:1474–6.

    Article  CAS  PubMed  Google Scholar 

  30. Bartsch T, Rempe T, Wrede A, et al. Progressive neurologic dysfunction in a psoriasis patient treated with dimethyl fumarate. Ann Neurol. 2015;78:501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez-Cibeira E, Ivanovic-Barbeito Y, Gutierrez-Martinez E, et al. Eculizumab-related progressive multifocal leukoencephalopathy. Neurology. 2016;86:399–400.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carson KR, Newsome SD, Kim EJ, et al. Progressive multifocal leukoencephalopathy associated with brentuximab vedotin therapy: a report of 5 cases from the Southern Network on Adverse Reactions (SONAR) project. Cancer. 2014;120:2464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gyang TV, Hamel J, Goodman AD, Gross RA, Samkoff L. Fingolimod-associated PML in a patient with prior immunosuppression. Neurology. 2016;86:1843–5.

    Article  PubMed  Google Scholar 

  34. Kiewe P, Seyfert S, Korper S, Rieger K, Thiel E, Knauf W. Progressive multifocal leukoencephalopathy with detection of JC virus in a patient with chronic lymphocytic leukemia parallel to onset of fludarabine therapy. Leuk Lymphoma. 2003;44:1815–8.

    Article  PubMed  Google Scholar 

  35. Lejniece S, Murovska M, Chapenko S, et al. Progressive multifocal leukoencephalopathy following fludarabine treatment in a chronic lymphocytic leukemia patient. Exp Oncol. 2011;33:239–41.

    CAS  PubMed  Google Scholar 

  36. Jarand J, Zochodne DW, Martin LO, Voll C. Neurological complications of infliximab. J Rheumatol. 2006;33:1018–20.

    PubMed  Google Scholar 

  37. Kumar D, Bouldin TW, Berger RG. A case of progressive multifocal leukoencephalopathy in a patient treated with infliximab. Arthritis Rheum. 2010;62:3191–5.

    Article  PubMed  Google Scholar 

  38. Rahmlow M, Shuster EA, Dominik J, et al. Leflunomide-associated progressive multifocal leukoencephalopathy. Arch Neurol. 2008;65:1538–9.

    Article  PubMed  Google Scholar 

  39. Neff RT, Hurst FP, Falta EM, et al. Progressive multifocal leukoencephalopathy and use of mycophenolate mofetil after kidney transplantation. Transplantation. 2008;86:1474–8.

    Article  PubMed  Google Scholar 

  40. Pavlovic AM, Bonaci-Nikolic B, Kozic D, et al. Progressive multifocal leukoencephalopathy associated with mycophenolate mofetil treatment in a woman with lupus and CD4+ T-lymphocyte deficiency. Lupus. 2012;21:100–2.

    Article  CAS  PubMed  Google Scholar 

  41. Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med. 2005;353:375–81.

    Article  CAS  PubMed  Google Scholar 

  42. Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med. 2005;353:369–74.

    Article  CAS  PubMed  Google Scholar 

  43. Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med. 2005;353:362–8.

    Article  PubMed  Google Scholar 

  44. Al-Tawfiq JA, Banda RW, Daabil RA, Dawamneh MF. Progressive multifocal leukoencephalopathy (PML) in a patient with lymphoma treated with rituximab: a case report and literature review. J Infect Public Health. 2015;8:493–7.

    Article  PubMed  Google Scholar 

  45. Sano Y, Nakano Y, Omoto M, et al. Rituximab-associated progressive multifocal leukoencephalopathy derived from non-Hodgkin lymphoma: neuropathological findings and results of mefloquine treatment. Intern Med. 2015;54:965–70.

    Article  CAS  PubMed  Google Scholar 

  46. Melis M, Biagi C, Smabrekke L, et al. Drug-induced progressive multifocal leukoencephalopathy: a comprehensive analysis of the WHO adverse drug reaction database. CNS Drugs. 2015;29:879–91.

    Article  CAS  PubMed  Google Scholar 

  47. Chahin S, Berger JR. A risk classification for immunosuppressive treatment-associated progressive multifocal leukoencephalopathy. J Neurovirol. 2015;21:623–31.

    Article  CAS  PubMed  Google Scholar 

  48. Zaheer F, Berger JR. Treatment-related progressive multifocal leukoencephalopathy: current understanding and future steps. Ther Adv Drug Saf. 2012;3:227–39.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Henegar CE, Eudy AM, Kharat V, Hill DD, Bennett D, Haight B. Progressive multifocal leukoencephalopathy in patients with systemic lupus erythematosus: a systematic literature review. Lupus. 2016;25:617–26. Systematic review of previously published cases of PML and systemic lupus erythematosus suggesting that PML risk is increased in SLE patients compared to patients with other rheumatologic conditions and can occur even in patients on minimal or no immunosuppressive therapy.

    Article  CAS  PubMed  Google Scholar 

  50. Itoh K, Kano T, Nagashio C, Mimori A, Kinoshita M, Sumiya M. Progressive multifocal leukoencephalopathy in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54:1020–2.

    Article  PubMed  Google Scholar 

  51. Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum. 2009;60:3761–5.

    Article  PubMed  Google Scholar 

  52. Brandao M, Damasio J, Marinho A, et al. Systemic lupus erythematosus, progressive multifocal leukoencephalopathy, and T-CD4+ lymphopenia. Clin Rev Allergy Immunol. 2012;43:302–7.

    Article  PubMed  Google Scholar 

  53. Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy in patients with rheumatic diseases: are patients with systemic lupus erythematosus at particular risk? Autoimmun Rev. 2008;8:144–6.

    Article  CAS  PubMed  Google Scholar 

  54. Sudhakar P, Bachman DM, Mark AS, Berger JR, Kedar S. Progressive multifocal leukoencephalopathy: recent advances and a neuro-ophthalmological review. J Neuroophthalmol. 2015;35:296–305.

    Article  PubMed  Google Scholar 

  55. Khoury MN, Alsop DC, Agnihotri SP, et al. Hyperintense cortical signal on magnetic resonance imaging reflects focal leukocortical encephalitis and seizure risk in progressive multifocal leukoencephalopathy. Ann Neurol. 2014;75:659–69. This study reviews imaging findings which are associated with increased risk of seizures in patients with PML.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Miskin DP, Herman ST, Ngo LH, Koralnik IJ. Predictors and characteristics of seizures in survivors of progressive multifocal leukoencephalopathy. J Neurovirol. 2015.

  57. Berger JR. Progressive multifocal leukoencephalopathy. Handb Clin Neurol. 2014;123:357–76.

    Article  PubMed  Google Scholar 

  58. Henry C, Jouan F, De Broucker T. JC virus granule cell neuronopathy: a cause of infectious cerebellar degeneration. J Neurol Sci. 2015;354:86–90.

    Article  PubMed  Google Scholar 

  59. Koralnik IJ, Wuthrich C, Dang X, et al. JC virus granule cell neuronopathy: a novel clinical syndrome distinct from progressive multifocal leukoencephalopathy. Ann Neurol. 2005;57:576–80.

    Article  PubMed  Google Scholar 

  60. Du Pasquier RA, Corey S, Margolin DH, et al. Productive infection of cerebellar granule cell neurons by JC virus in an HIV+ individual. Neurology. 2003;61:775–82.

    Article  PubMed  Google Scholar 

  61. Wuthrich C, Dang X, Westmoreland S, et al. Fulminant JC virus encephalopathy with productive infection of cortical pyramidal neurons. Ann Neurol. 2009;65:742–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Agnihotri SP, Wuthrich C, Dang X, et al. A fatal case of JC virus meningitis presenting with hydrocephalus in a human immunodeficiency virus-seronegative patient. Ann Neurol. 2014;76:140–7. This case report describes a patient who presented with a clinical syndrome consistent with normal pressure hydrocephalus and was later found to have JCV in both meningeal and choroid plexus cells. It provides a pertinent example of the ever expanding spectrum of JCV-related disease.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Keith J, Bilbao J, Baskind R. JC virus granular neuronopathy and rhombencephalic progressive multifocal leukoencephalopathy: case report and review of the literature. Neuropathology. 2012;32:280–4.

    Article  PubMed  Google Scholar 

  64. Dang L, Dang X, Koralnik IJ, Todd PK. JC polyomavirus granule cell neuronopathy in a patient treated with rituximab. JAMA Neurol. 2014;71:487–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chalkias S, Dang X, Bord E, et al. JC virus reactivation during prolonged natalizumab monotherapy for multiple sclerosis. Ann Neurol. 2014;75:925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Agnihotri SP, Dang X, Carter JL, et al. JCV GCN in a natalizumab-treated MS patient is associated with mutations of the VP1 capsid gene. Neurology. 2014;83:727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Behzad-Behbahani A, Klapper PE, Vallely PJ, Cleator GM, Bonington A. BKV-DNA and JCV-DNA in CSF of patients with suspected meningitis or encephalitis. Infection. 2003;31:374–8.

    CAS  PubMed  Google Scholar 

  68. Viallard JF, Ellie E, Lazaro E, Lafon ME, Pellegrin JL. JC virus meningitis in a patient with systemic lupus erythematosus. Lupus. 2005;14:964–6.

    Article  PubMed  Google Scholar 

  69. Avellaneda-Gomez C, Torres Iglesias R, Puente Periz V, Guerri Fernandez RC. Extrapyramidal syndrome with generalized chorea as an atypical presentation of progressive multifocal leukoencephalopathy. Neurologia 2016.

  70. Willott RH, Sunman W, Munshi SK. Progressive multifocal leukoencephalopathy masquerading as cerebellar infarction. Age Ageing. 2016.

  71. Corral I, Quereda C, Dronda F, et al. Progressive multifocal leukoencephalopathy mimicking milliary CNS tuberculosis. J Neurovirol. 2015;21:691–3.

    Article  PubMed  Google Scholar 

  72. Takeda S, Yamazaki K, Miyakawa T, Takahashi H, Ikuta F, Arai H. Progressive multifocal leukoencephalopathy showing extensive spinal cord involvement in a patient with lymphocytopenia. Neuropathology. 2009;29:485–93.

    Article  PubMed  Google Scholar 

  73. Murayi R, Schmitt J, Woo JH, Berger JR. Spinal cord progressive multifocal leukoencephalopathy detected premortem by MRI. J Neurovirol. 2015;21:688–90.

    Article  PubMed  Google Scholar 

  74. Berger JR, Aksamit AJ, Clifford DB, et al. PML diagnostic criteria: consensus statement from the AAN Neuroinfectious Disease Section. Neurology. 2013;80:1430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ryschkewitsch CF, Jensen PN, Major EO. Multiplex qPCR assay for ultra sensitive detection of JCV DNA with simultaneous identification of genotypes that discriminates non-virulent from virulent variants. J Clin Virol. 2013;57:243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. White MK, Sariyer IK, Gordon J, et al. Diagnostic assays for polyomavirus JC and progressive multifocal leukoencephalopathy. Rev Med Virol. 2016;26:102–14.

    Article  CAS  PubMed  Google Scholar 

  77. Zivanovic M, Savsek L, Poljak M, Popovic M. Possible pitfalls in the diagnostic of progressive multifocal leukoencephalopathy. Clin Neuropathol. 2016;35:66–71.

    Article  PubMed  Google Scholar 

  78. Dunne Jr WM, Westblade LF, Ford B. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 2012;31:1719–26.

    Article  CAS  PubMed  Google Scholar 

  79. Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370:2408–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wilson MR, Shanbhag NM, Reid MJ, et al. Diagnosing balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol. 2015;78:722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garrels K, Kucharczyk W, Wortzman G, Shandling M. Progressive multifocal leukoencephalopathy: clinical and MR response to treatment. AJNR Am J Neuroradiol. 1996;17:597–600.

    CAS  PubMed  Google Scholar 

  82. Shah R, Bag AK, Chapman PR, Cure JK. Imaging manifestations of progressive multifocal leukoencephalopathy. Clin Radiol. 2010;65:431–9.

    Article  CAS  PubMed  Google Scholar 

  83. Goncalves FG, Lamb L, Del Carpio-O’Donovan R. Progressive multifocal leukoencephalopathy restricted to the posterior fossa in a patient with systemic lupus erythematosus. Braz J Infect Dis. 2011;15:609–12.

    Article  PubMed  Google Scholar 

  84. Jones Jr HR, Hedley-Whyte ET, Freidberg SR, Kelleher Jr JE, Krolikowski J. Primary cerebellopontine progressive multifocal leukoencephalopathy diagnosed premortem by cerebellar biopsy. Ann Neurol. 1982;11:199–202.

    Article  PubMed  Google Scholar 

  85. Svensson PA, Larsson EM. Infratentorial progressive multifocal leucoencephalopathy (PML) in a patient with SLE (2008: 4b). Eur Radiol. 2008;18:1526–8.

    Article  PubMed  Google Scholar 

  86. White RP, Abraham S, Singhal S, Manji H, Clarke CR. Progressive multifocal leucoencephalopathy isolated to the posterior fossa in a patient with systemic lupus erythematosus. Rheumatology (Oxford). 2002;41:826–7.

    Article  CAS  Google Scholar 

  87. Arbusow V, Strupp M, Pfister HW, Seelos KC, Bruckmann H, Brandt T. Contrast enhancement in progressive multifocal leukoencephalopathy: a predictive factor for long-term survival? J Neurol. 2000;247:306–8.

    Article  CAS  PubMed  Google Scholar 

  88. Tan K, Roda R, Ostrow L, McArthur J, Nath A. PML-IRIS in patients with HIV infection: clinical manifestations and treatment with steroids. Neurology. 2009;72:1458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7:337–346.90.

    Article  CAS  PubMed  Google Scholar 

  90. Mertens K, Acou M, Van den Broecke C, et al. Progressive multifocal leukoencephalopathy (PML) mimicking high-grade glioma on delayed F-18 FDG PET imaging. J Clin Neurosci. 2012;19:1167–9.

    Article  PubMed  Google Scholar 

  91. Miyagawa M, Maeda M, Umino M, et al. Low signal intensity in U-fiber identified by susceptibility-weighted imaging in two cases of progressive multifocal leukoencephalopathy. J Neurol Sci. 2014;344:198–202. The authors describe an MRI SWI pattern of juxtacortical lesions with low signal intensity of the U fibers which was present in two cases of PML. This finding was later replicated in NTZ-associated PML but has also been found to be non-specific for PML (present in cases of cerebral infarcts and encephalitis as well). However, it likely represents a sensitive but non-specific imaging finding associated with PML.

    Article  PubMed  Google Scholar 

  92. Hodel J, Outteryck O, Verclytte S, et al. Brain magnetic susceptibility changes in patients with natalizumab-associated progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol. 2015;36:2296–302.

    Article  CAS  PubMed  Google Scholar 

  93. Carra-Dalliere C, Menjot de Champfleur N, Ayrignac X, Deverdun J, Labauge P. Quantitative susceptibility mapping suggests a paramagnetic effect in PML. Neurology. 2015;84:1501–2.

    Article  PubMed  Google Scholar 

  94. Umino M, Maeda M, Ii Y, Tomimoto H, Sakuma H. Low-signal-intensity rim on susceptibility-weighted imaging is not a specific finding to progressive multifocal leukoencephalopathy. J Neurol Sci. 2016;362:155–9.

    Article  PubMed  Google Scholar 

  95. Adang L, Berger J. Progressive multifocal leukoencephalopathy. F1000Res 2015;4.

  96. Vermersch P, Kappos L, Gold R, et al. Clinical outcomes of natalizumab-associated progressive multifocal leukoencephalopathy. Neurology. 2011;76:1697–704.

    Article  CAS  PubMed  Google Scholar 

  97. Elphick GF, Querbes W, Jordan JA, et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science. 2004;306:1380–3.

    Article  CAS  PubMed  Google Scholar 

  98. Cettomai D, McArthur JC. Mirtazapine use in human immunodeficiency virus-infected patients with progressive multifocal leukoencephalopathy. Arch Neurol. 2009;66:255–8.

    Article  PubMed  Google Scholar 

  99. Epperla N, Medina-Flores R, Mazza JJ, Yale SH. Mirtazapine and mefloquine therapy for non-AIDS-related progressive multifocal leukoencephalopathy. WMJ. 2014;113:242–5.

    PubMed  Google Scholar 

  100. Brickelmaier M, Lugovskoy A, Kartikeyan R, et al. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob Agents Chemother. 2009;53:1840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clifford DB, Nath A, Cinque P, et al. A study of mefloquine treatment for progressive multifocal leukoencephalopathy: results and exploration of predictors of PML outcomes. J Neurovirol. 2013;19:351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nukuzuma S, Nakamichi K, Kameoka M, et al. Suppressive effect of topoisomerase inhibitors on JC polyomavirus propagation in human neuroblastoma cells. Microbiol Immunol. 2016;60:253–60.

    Article  CAS  PubMed  Google Scholar 

  103. Royal 3rd W, Dupont B, McGuire D, et al. Topotecan in the treatment of acquired immunodeficiency syndrome-related progressive multifocal leukoencephalopathy. J Neurovirol. 2003;9:411–9.

    Article  CAS  PubMed  Google Scholar 

  104. Alstadhaug KB, Croughs T, Henriksen S, et al. Treatment of progressive multifocal leukoencephalopathy with interleukin 7. JAMA Neurol. 2014;71:1030–5.

    Article  PubMed  Google Scholar 

  105. Sospedra M, Schippling S, Yousef S, et al. Treating progressive multifocal leukoencephalopathy with interleukin 7 and vaccination with JC virus capsid protein VP1. Clin Infect Dis. 2014;59:1588–92.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gasnault J, de Goer de Herve MG, Michot JM, et al. Efficacy of recombinant human interleukin 7 in a patient with severe lymphopenia-related progressive multifocal leukoencephalopathy. Open Forum Infect Dis. 2014;1:ofu074.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Middel A, Arends JE, van Lelyveld SF, et al. Clinical and immunologic effects of maraviroc in progressive multifocal leukoencephalopathy. Neurology. 2015;85:104–6. This article describes the rationale for maraviroc therapy in cases of PML and describes several cases in which there was anecdoctal benefit. It provides a basis upon which future clinical trials of maraviroc therapy in the treatment of both HIV+ and HIV- PML cases could be based.

    Article  PubMed  Google Scholar 

  108. Hall CD, Dafni U, Simpson D, et al. Failure of cytarabine in progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. AIDS Clinical Trials Group 243 Team. N Engl J Med. 1998;338:1345–51.

    Article  CAS  PubMed  Google Scholar 

  109. De Luca A, Ammassari A, Pezzotti P, et al. Cidofovir in addition to antiretroviral treatment is not effective for AIDS-associated progressive multifocal leukoencephalopathy: a multicohort analysis. AIDS. 2008;22:1759–67.

    Article  PubMed  CAS  Google Scholar 

  110. Geschwind MD, Skolasky RI, Royal WS, McArthur JC. The relative contributions of HAART and alpha-interferon for therapy of progressive multifocal leukoencephalopathy in AIDS. J Neurovirol. 2001;7:353–7.

    Article  CAS  PubMed  Google Scholar 

  111. Yousry TA, Major EO, Ryschkewitsch C, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med. 2006;354:924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fox RJ, Rudick RA. Risk stratification and patient counseling for natalizumab in multiple sclerosis. Neurology. 2012;78:436–7.

    Article  PubMed  Google Scholar 

  113. McGuigan C, Craner M, Guadagno J, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2016;87:117–25.

    CAS  PubMed  Google Scholar 

  114. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366:1870–80.

    Article  CAS  PubMed  Google Scholar 

  115. Berger JR, Fox RJ. Reassessing the risk of natalizumab-associated PML. J Neurovirol. 2016.

  116. Warnke C, Mausberg AK, Stettner M, et al. Natalizumab affects the T-cell receptor repertoire in patients with multiple sclerosis. Neurology. 2013;81:1400–8.

    Article  CAS  PubMed  Google Scholar 

  117. Bonig H, Wundes A, Chang KH, Lucas S, Papayannopoulou T. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood. 2008;111:3439–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frohman EM, Monaco MC, Remington G, et al. JC virus in CD34+ and CD19+ cells in patients with multiple sclerosis treated with natalizumab. JAMA Neurol. 2014;71:596–602.

    Article  PubMed  Google Scholar 

  119. Lindberg RL, Achtnichts L, Hoffmann F, Kuhle J, Kappos L. Natalizumab alters transcriptional expression profiles of blood cell subpopulations of multiple sclerosis patients. J Neuroimmunol. 2008;194:153–64.

    Article  CAS  PubMed  Google Scholar 

  120. Meira M, Sievers C, Hoffmann F, et al. Natalizumab-induced POU2AF1/Spi-B upregulation: a possible route for PML development. Neurol Neuroimmunol Neuroinflamm. 2016;3:e223.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Marshall LJ, Dunham L, Major EO. Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity. J Gen Virol. 2010;91:3042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marshall LJ, Moore LD, Mirsky MM, Major EO. JC virus promoter/enhancers contain TATA box-associated Spi-B-binding sites that support early viral gene expression in primary astrocytes. J Gen Virol. 2012;93:651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marshall LJ, Ferenczy MW, Daley EL, Jensen PN, Ryschkewitsch CF, Major EO. Lymphocyte gene expression and JC virus noncoding control region sequences are linked with the risk of progressive multifocal leukoencephalopathy. J Virol. 2014;88:5177–83. This study provides evidence that the transcription factor SpiB is markedly upregulated in CD34+ cells from natalizumab-treated individuals. In light of previous evidence that CD34+ cells are increased in the periphery following natalizumab treatment, and that SpiB activates JCV gene expression, these findings suggest that natalizumab may potentiate PML by several complementary mechanisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Plavina T, Subramanyam M, Bloomgren G, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76:802–12.

    Article  CAS  PubMed  Google Scholar 

  125. Delbue S, Elia F, Carloni C, et al. JC virus urinary excretion and seroprevalence in natalizumab-treated multiple sclerosis patients. J Neurovirol. 2015;21:645–52.

    Article  CAS  PubMed  Google Scholar 

  126. Schwab N, Schneider-Hohendorf T, Pignolet B, et al. Therapy with natalizumab is associated with high JCV seroconversion and rising JCV index values. Neurol Neuroimmunol Neuroinflamm. 2016;3:e195.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schwab N, Schneider-Hohendorf T, Posevitz V, et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients. Neurology. 2013;81:865–71.

    Article  CAS  PubMed  Google Scholar 

  128. Schneider-Hohendorf T, Philipp K, Husstedt IW, Wiendl H, Schwab N. Specific loss of cellular L-selectin on CD4(+) T cells is associated with progressive multifocal leukoencephalopathy development during HIV infection. AIDS. 2014;28:793–5.

    Article  CAS  PubMed  Google Scholar 

  129. Schwab N, Schneider-Hohendorf T, Pignolet B, et al. PML risk stratification using anti-JCV antibody index and L-selectin. Mult Scler. 2015.

  130. Lieberman LA, Zeng W, Singh C, et al. CD62L is not a reliable biomarker for predicting PML risk in natalizumab-treated R-MS patients. Neurology. 2016;86:375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hodel J, Darchis C, Outteryck O, et al. Punctate pattern: a promising imaging marker for the diagnosis of natalizumab-associated PML. Neurology. 2016;86:1516–23. This study suggests that the MRI finding of a punctate pattern is a very sensitivity and specific indicator of PML. Their findings also suggested that a punctate pattern may be an early imaging finding of NTZ-associated PML and may allow identification of PML in the asymptomatic stage of the disease which is important as earlier identification and treatment likely leads to better clinical outcomes.

    Article  CAS  PubMed  Google Scholar 

  132. Khatri BO, Man S, Giovannoni G, et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology. 2009;72:402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dong-Si T, Gheuens S, Gangadharan A, et al. Predictors of survival and functional outcomes in natalizumab-associated progressive multifocal leukoencephalopathy. J Neurovirol. 2015;21:637–44. This study presents demographic and clinical characteristics which predict better outcomes in cases of NTZ-associated PML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stork L, Bruck W, Bar-Or A, Metz I. High CCR5 expression in natalizumab-associated progressive multifocal leukoencephalopathy immune reconstitution inflammatory syndrome supports treatment with the CCR5 inhibitor maraviroc. Acta Neuropathol. 2015;129:467–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Venkatesan.

Ethics declarations

Conflict of Interest

Drs. Saylor and Venkatesan declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Central Nervous System Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saylor, D., Venkatesan, A. Progressive Multifocal Leukoencephalopathy in HIV-Uninfected Individuals. Curr Infect Dis Rep 18, 33 (2016). https://doi.org/10.1007/s11908-016-0543-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-016-0543-8

Keywords

Navigation