Skip to main content
Log in

Is Left Ventricular Hypertrophy a Valid Therapeutic Target?

  • Hypertension and the Heart (B Upadhya, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to answer the question whether left ventricular hypertrophy (LVH) could be considered a therapeutic target in patients with hypertension. To fulfill this purpose, we briefly outline different methods of measuring LVH, then discuss the current evidence and unresolved controversies regarding the relationships among LVH, blood pressure (BP), and cardiovascular disease (CVD) outcomes.

Recent Findings

The methods and criteria used for defining LVH in clinical studies lack consistency and are inherently different. Electrocardiogram (ECG) has been the most common method, but some studies used echocardiography, and recently, the cardiac magnetic resonance imaging was used by some studies as well. Regardless of the method, studies have shown that higher BP is a risk factor for LVH, regression of LVH is possible by successful BP lowering, and LVH is associated with CVD outcomes. Nevertheless, recent trials revealed that although intensive BP lowering (systolic BP target of < 120 mm of Hg) resulted in lower rates of developing new ECG-LVH and higher rates of regression of existing LVH, the benefit of intensive BP lowering on the risk of CV events was not meaningfully influenced by its favorable effect on ECG-LVH. These findings raise several critical questions about the mechanistic links between hypertension treatment, LVH regression, and reduction in CV events. Given these questions and findings, LVH improvement cannot yet be considered a reliable surrogate outcome measure for use in the context of hypertensive heart disease.

Summary

LVH is a modifiable risk factor related to systolic BP and regression of LVH may reduce subsequent CV events. However, LVH may not be the “holy grail” in regard to therapeutic targets in hypertensive heart disease, but it could be considered one of the markers in the successful management of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–66.

    Article  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  Google Scholar 

  3. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    Article  CAS  Google Scholar 

  4. Lauer MS, Anderson KM, Levy D. Influence of contemporary versus 30-year blood pressure levels on left ventricular mass and geometry: the Framingham Heart Study. J Am Coll Cardiol. 1991;18:1287–94.

    Article  CAS  Google Scholar 

  5. Carabello BA, Zile MR, Tanaka R, Cooper G. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Phys. 1992;263:H1137–44.

    CAS  Google Scholar 

  6. Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA. 1991;266:231–6.

    Article  CAS  Google Scholar 

  7. Gardin JM, McClelland R, Kitzman DW, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six-to-seven year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort: the cardiovascular health study. Am J Cardiol. 2001;87:1051–7.

    Article  CAS  Google Scholar 

  8. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol. 2008;52:2148–55.

    Article  Google Scholar 

  9. Raman SV. The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol. 2010;55:91–6.

    Article  Google Scholar 

  10. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, et al. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2000;35:1628–37.

    Article  CAS  Google Scholar 

  11. Simpson HJ, Gandy SJ, Houston JG, Rajendra NS, Davies JI, Struthers AD. Left ventricular hypertrophy: reduction of blood pressure already in the normal range further regresses left ventricular mass. Heart. 2010;96:148–52.

    Article  CAS  Google Scholar 

  12. Bacharova L, Ugander M. Left ventricular hypertrophy: the relationship between the electrocardiogram and cardiovascular magnetic resonance imaging. Ann Noninvasive Electrocardiol. 2014;19:524–33.

    Article  Google Scholar 

  13. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  Google Scholar 

  14. Diez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension. 2010;55:1–8.

    Article  CAS  Google Scholar 

  15. Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53:992–1002.

    Article  Google Scholar 

  16. Gottdiener JS, Bednarz J, Devereux RB, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.

    PubMed  Google Scholar 

  17. Alfakih K, Bloomer T, Bainbridge S, Bainbridge G, Ridgway J, Williams G, et al. A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension. Eur J Radiol. 2004;52:103–9.

    Article  Google Scholar 

  18. • Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2000;2:271–8. This study showed that CMR allows for sample sizes that are 10% of those needed for echocardiography, which more than offsets the cost differential between these imaging modalities.

    Article  CAS  Google Scholar 

  19. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.

    Article  Google Scholar 

  20. Alfakih K, Reid S, Jones T, Sivananthan MU. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol. 2004;14:1813–22.

    Article  Google Scholar 

  21. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25:1940–65.

    Article  Google Scholar 

  22. Katz J, Milliken MC, Stray-Gundersen J, Buja LM, Parkey RW, Mitchell JH, et al. Estimation of human myocardial mass with MR imaging. Radiology. 1988;169:495–8.

    Article  CAS  Google Scholar 

  23. Stephensen SS, Carlsson M, Ugander M, Engblom H, Olivecrona G, Erlinge D, et al. Agreement of left ventricular mass in steady state free precession and delayed enhancement MR images: implications for quantification of fibrosis in congenital and ischemic heart disease. BMC Med Imaging. 2010;10:4.

    Article  Google Scholar 

  24. Bacharova L, Chen H, Estes EH, Mateasik A, Bluemke DA, Lima JA, et al. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. Am J Cardiol. 2015;115:515–22.

    Article  Google Scholar 

  25. Lewis GA, Schelbert EB, Miller CA. Letter by Lewis et al regarding article, “Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: SPRINT (Systolic Blood Pressure Intervention Trial)”. Circulation. 2018;137:1297–8.

    Article  Google Scholar 

  26. Mancini GB, Dahlof B, Diez J. Surrogate markers for cardiovascular disease: structural markers. Circulation. 2004;109:IV22–30.

    Article  Google Scholar 

  27. de Simone G, Kizer JR, Chinali M, Roman MJ, Bella JN, Best LG, et al. Normalization for body size and population-attributable risk of left ventricular hypertrophy[ast]. Am J Hypertens. 2005;18:191–6.

    Article  Google Scholar 

  28. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.

    Article  CAS  Google Scholar 

  29. Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, et al. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med. 1992;152:1855–60.

    Article  CAS  Google Scholar 

  30. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11:1133–7.

    Article  CAS  Google Scholar 

  31. Cao X, Broughton ST, Waits GS, Nguyen T, Li Y, Soliman EZ. Interrelations between hypertension and electrocardiographic left ventricular hypertrophy and their associations with cardiovascular mortality. Am J Cardiol. 2019;123:274–83.

    Article  Google Scholar 

  32. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med. 1988;108:7–13.

    Article  CAS  Google Scholar 

  33. Savage DD, Levy D, Dannenberg AL, Garrison RJ, Castelli WP. Association of echocardiographic left ventricular mass with body size, blood pressure and physical activity (the Framingham Study). Am J Cardiol. 1990;65:371–6.

    Article  CAS  Google Scholar 

  34. Hammond IW, Devereux RB, Alderman MH, Lutas EM, Spitzer MC, Crowley JS, et al. The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension. J Am Coll Cardiol. 1986;7:639–50.

    Article  CAS  Google Scholar 

  35. Olsen MH, Wachtell K, Hermann KL, Frandsen E, Dige-Petersen H, Rokkedal J, et al. Is cardiovascular remodeling in patients with essential hypertension related to more than high blood pressure? A LIFE substudy. Losartan intervention for endpoint-reduction in hypertension. Am Heart J. 2002;144:530–7.

    Article  Google Scholar 

  36. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108:1831–8.

    Article  CAS  Google Scholar 

  37. Solomon SD, Appelbaum E, Manning WJ, Verma A, Berglund T, Lukashevich V, et al. Effect of the direct renin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation. 2009;119:530–7.

    Article  CAS  Google Scholar 

  38. Okin PM, Devereux RB, Jern S, Harris KE, Jern S, Kjeldsen SE, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  CAS  Google Scholar 

  39. Devereux RB, Dahlof B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110:1456–62.

    Article  CAS  Google Scholar 

  40. Burns J, Ball SG, Worthy G, Struthers AD, Mary DA, Greenwood JP. Hypertensive left ventricular hypertrophy: a mechanistic approach to optimizing regression assessed by cardiovascular magnetic resonance. J Hypertens. 2012;30:2039–46.

    Article  CAS  Google Scholar 

  41. Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17.

    Article  CAS  Google Scholar 

  42. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084–91.

    Article  CAS  Google Scholar 

  43. • Soliman EZ, Byington RP, Bigger JT, Evans G, Okin PM, Goff DC Jr, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with diabetes mellitus: action to control cardiovascular risk in diabetes blood pressure trial. Hypertension. 2015;66:1123–9. This is the first evidence from a large clinical trial showing the favorable impact of intensive systolic blood pressure lowering (target < 120 mmHg) compared to standard blood pressure lowering (target < 140 mmHg) in patients with diabetes.

    Article  CAS  Google Scholar 

  44. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet. 2009;374:525–33.

    Article  Google Scholar 

  45. •• Soliman EZ, Ambrosius WT, Cushman WC, Zhang ZM, Bates JT, Neyra JA, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: SPRINT (systolic blood pressure intervention trial). Circulation. 2017;136:440–50. This is the first evidence from a large clinical trial showing the favorable impact of intensive systolic blood pressure lowering (target < 120 mmHg) compared to standard blood pressure lowering (target < 140 mmHg) on LVH in patients without diabetes. It also shows that the favorable impact of intensive blood pressure lowering on LVH does not explain much of the favorable impact of intensive blood pressure lowering on cardiovascular events.

    Article  Google Scholar 

  46. Soliman EZ, Prineas RJ. Antihypertensive therapies and left ventricular hypertrophy. Curr Hypertens Rep. 2017;19:79.

    Article  Google Scholar 

  47. • Ernst ME, Davis BR, Soliman EZ, Prineas RJ, Okin PM, Ghosh A, et al. Electrocardiographic measures of left ventricular hypertrophy in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. J Am Soc Hypertens. 2016;10:930–8. This secondary analysis from the ALLHAT trial, one of the largest clinical trials in hypertension ever done in the USA, provides evidence of no differences among antihypertensive classes in terms of impact on LVH regression.

    Article  Google Scholar 

  48. Pogatsa-Murray G, Varga L, Varga A, Abrahám GY, Nagy I, et al. Changes in left ventricular mass during treatment with minoxidil and cilazapril in hypertensive patients with left ventricular hypertrophy. J Hum Hypertens. 1997;11:149–56.

    Article  CAS  Google Scholar 

  49. Lonnebakken MT, Izzo R, Mancusi C, Gerdts E, Losi MA, Canciello G, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc. 2017;6:e004152.

    Article  Google Scholar 

  50. de Simone G, Okin PM, Gerdts E, Olsen MH, Wachtell K, Hille DA, et al. Clustered metabolic abnormalities blunt regression of hypertensive left ventricular hypertrophy: the LIFE study. Nutr Metab Cardiovasc Dis. 2009;19:634–40.

    Article  Google Scholar 

  51. de Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, et al. Lack of reduction of left ventricular mass in treated hypertension: the Strong Heart Study. J Am Heart Assoc. 2013;2:e000144.

    Article  Google Scholar 

  52. Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 2008;51:1109–14.

    Article  CAS  Google Scholar 

  53. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  Google Scholar 

  54. Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents. Circulation. 2011;123:2434–506.

    Article  Google Scholar 

  55. Levy D, Salomon M, D'Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90:1786–93.

    Article  CAS  Google Scholar 

  56. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  Google Scholar 

  57. Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, et al. Left ventricular mass and risk of stroke in an elderly cohort. JAMA. 1994;272:33–6.

    Article  CAS  Google Scholar 

  58. Drazner MH, Rame JE, Marino EK, Gottdiener JS, Kitzman DW, Gardin JM, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction: the cardiovascular health study. J Am Coll Cardiol. 2004;43:2207–15.

    Article  Google Scholar 

  59. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    Article  CAS  Google Scholar 

  60. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350–6.

    Article  CAS  Google Scholar 

  61. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  Google Scholar 

  62. • Costanzo P, Savarese G, Rosano G, Musella F, Casaretti L, Vassallo E, et al. Left ventricular hypertrophy reduction and clinical events. A meta-regression analysis of 14 studies in 12,809 hypertensive patients. Int J Cardiol. 2013;167:2757–64. This is a large meta-analysis failed to show a significant relationship between LVH (both imaging and ECG LVH) changes and clinical events.

    Article  Google Scholar 

  63. Schulz E, Gori T, Munzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34:665–73.

    Article  CAS  Google Scholar 

  64. Papademetriou V. Should target organ damage become a therapeutic target? J Clin Hypertens (Greenwich ). 2013;15:710–1.

    Article  Google Scholar 

  65. Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’Oro R, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33:1411–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi Upadhya.

Ethics declarations

Conflict of Interest

Jeremy Earl Brooks declares that he has no conflict of interest.

Elsayed Z. Soliman declares that he has no conflict of interest.

Bharathi Upadhya has received research funding from Novartis and Corvia.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, J.E., Soliman, E.Z. & Upadhya, B. Is Left Ventricular Hypertrophy a Valid Therapeutic Target?. Curr Hypertens Rep 21, 47 (2019). https://doi.org/10.1007/s11906-019-0952-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0952-9

Keywords

Navigation