Skip to main content

Advertisement

Log in

Role of Collectrin, an ACE2 Homologue, in Blood Pressure Homeostasis

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Collectrin (Tmem27) is a transmembrane glycoprotein that is highly expressed in the kidney and vascular endothelium. It is a homologue of the angiotensin-converting enzyme 2 (ACE2) but harbors no catalytic domain. In the extravascular tissues of the kidney, collectrin is localized to the proximal tubule and collecting duct. Collectrin-deficient mice are featured with hypertension and exaggerated salt sensitivity. These phenotypes are associated with impaired uptake of the nitric oxide precursor l-arginine and the expression of its amino acid transporters, CAT-1 and y+LAT1, in endothelial cells. In addition, collectrin-deficient mice display decreased dimerization of nitric oxide synthase and decreased nitric oxide synthesis, but enhanced superoxide generation, suggesting that deletion of collectrin leads to a state of nitric oxide synthase uncoupling. These findings suggest that collectrin plays a protective role against hypertension. The collectrin knockout mouse represents a unique model for hypertension research. Furthermore, collectrin may serve as a novel therapeutic target in the treatment of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310(9):959–68. doi:10.1001/jama.2013.184182.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, et al. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem. 2001;276(20):17132–9. doi:10.1074/jbc.M006723200.

    Article  PubMed  CAS  Google Scholar 

  3. Mount DB. Collectrin and the kidney. Curr Opin Nephrol Hypertens. 2007;16(5):427–9. doi:10.1097/MNH.0b013e3282e9acc5.

    Article  PubMed  Google Scholar 

  4. Yasuhara A, Wada J, Malakauskas SM, Zhang Y, Eguchi J, Nakatsuka A, et al. Collectrin is involved in the development of salt-sensitive hypertension by facilitating the membrane trafficking of apical membrane proteins via interaction with soluble N-ethylmaleiamide-sensitive factor attachment protein receptor complex. Circulation. 2008;118(21):2146–55. doi:10.1161/CIRCULATIONAHA.108.787259.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang H, Wada J, Kanwar YS, Tsuchiyama Y, Hiragushi K, Hida K, et al. Screening for genes up-regulated in 5/6 nephrectomized mouse kidney. Kidney Int. 1999;56(2):549–58. doi:10.1046/j.1523-1755.1999.00561.x.

    Article  PubMed  CAS  Google Scholar 

  6. Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, et al. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol. 2007;292(2):F533–44. doi:10.1152/ajprenal.00325.2006.

    Article  PubMed  CAS  Google Scholar 

  7. McCoy KE, Zhou X, Vize PD. Collectrin/tmem27 is expressed at high levels in all segments of the developing Xenopus pronephric nephron and in the Wolffian duct. Gene Expr Patterns : GEP. 2008;8(4):271–4. doi:10.1016/j.gep.2007.12.002.

    Article  PubMed  CAS  Google Scholar 

  8. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, et al. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab. 2005;2(6):373–84. doi:10.1016/j.cmet.2005.11.003.

    Article  PubMed  CAS  Google Scholar 

  9. Akpinar P, Kuwajima S, Krutzfeldt J, Stoffel M. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab. 2005;2(6):385–97. doi:10.1016/j.cmet.2005.11.001.

    Article  PubMed  CAS  Google Scholar 

  10. Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, et al. Essential role for collectrin in renal amino acid transport. Nature. 2006;444(7122):1088–91. doi:10.1038/nature05475.

    Article  PubMed  CAS  Google Scholar 

  11. Cechova S, Zeng Q, Billaud M, Mutchler S, Rudy CK, Straub AC, et al. Loss of collectrin, an angiotensin-converting enzyme 2 homolog, uncouples endothelial nitric oxide synthase and causes hypertension and vascular dysfunction. Circulation. 2013;128(16):1770–80. doi:10.1161/CIRCULATIONAHA.113.003301. This study established the role of collectrin in blood pressure regulation. Furthermore, the study links amino acid transport defect with “L-arginine paradox,” endothelial dysfunction, and hypertension.

    Article  PubMed  CAS  Google Scholar 

  12. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384(6608):455–8. doi:10.1038/384455a0.

    Article  PubMed  CAS  Google Scholar 

  13. Shih DQ, Stoffel M. Molecular etiologies of MODY and other early-onset forms of diabetes. Curr Diabetes Rep. 2002;2(2):125–34.

    Article  Google Scholar 

  14. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996;84(4):575–85.

    Article  PubMed  CAS  Google Scholar 

  15. Esterhazy D, Stutzer I, Wang H, Rechsteiner MP, Beauchamp J, Dobeli H, et al. Bace2 is a beta cell-enriched protease that regulates pancreatic beta cell function and mass. Cell Metab. 2011;14(3):365–77. doi:10.1016/j.cmet.2011.06.018. This report identified the beta-site amyloid precursor protein cleaving enzyme 2 (Bace2) as the sheddase of collectrin, suggesting that Bace2 may be a therapeutic target in conditions in which increased expression of collectrin may be desirable for potential beneficial effects such as salt-sensitive hypertension.

    Article  PubMed  CAS  Google Scholar 

  16. Bennett BD, Babu-Khan S, Loeloff R, Louis JC, Curran E, Citron M, et al. Expression analysis of BACE2 in brain and peripheral tissues. J Biol Chem. 2000;275(27):20647–51. doi:10.1074/jbc.M002688200.

    Article  PubMed  CAS  Google Scholar 

  17. Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116(8):2218–25. doi:10.1172/JCI16980.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Hartner A, Cordasic N, Klanke B, Veelken R, Hilgers KF. Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant. 2003;18(10):1999–2004. doi:10.1093/ndt/gfg299.

    Article  PubMed  CAS  Google Scholar 

  19. Salzler HR, Griffiths R, Ruiz P, Chi L, Frey C, Marchuk DA, et al. Hypertension and albuminuria in chronic kidney disease mapped to a mouse chromosome 11 locus. Kidney Int. 2007;72(10):1226–32.

    Article  PubMed  CAS  Google Scholar 

  20. Francois H, Athirakul K, Howell D, Dash R, Mao L, Kim HS, et al. Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab. 2005;2(3):201–7. doi:10.1016/j.cmet.2005.08.005.

    Article  PubMed  CAS  Google Scholar 

  21. Ryan MJ, Didion SP, Davis DR, Faraci FM, Sigmund CD. Endothelial dysfunction and blood pressure variability in selected inbred mouse strains. Arterioscler Thromb Vasc Biol. 2002;22(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wang Q, Hummler E, Nussberger J, Clement S, Gabbiani G, Brunner HR, et al. Blood pressure, cardiac, and renal responses to salt and deoxycorticosterone acetate in mice: role of Renin genes. J Am Soc Nephrol. 2002;13(6):1509–16.

    Article  PubMed  CAS  Google Scholar 

  23. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298(Pt 2):249–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest. 2005;115(5):1221–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev. 2009;89(2):481–534. doi:10.1152/physrev.00042.2007.

    Article  PubMed  CAS  Google Scholar 

  26. Verhaar MC, Westerweel PE, van Zonneveld AJ, Rabelink TJ. Free radical production by dysfunctional eNOS. Heart. 2004;90(5):494–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Closs EI, Scheld JS, Sharafi M, Forstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. 2000;57(1):68–74.

    PubMed  CAS  Google Scholar 

  28. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990;87(21):8612–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Simon A, Plies L, Habermeier A, Martine U, Reining M, Closs EI. Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res. 2003;93(9):813–20. doi:10.1161/01.res.0000097761.19223.0d.

    Article  PubMed  CAS  Google Scholar 

  30. Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol. 2003;88(6):699–710.

    Article  PubMed  CAS  Google Scholar 

  31. Kakoki M, Kim HS, Arendshorst WJ, Mattson DL. L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1478–85. doi:10.1152/ajpregu.00386.2004.

    Article  PubMed  CAS  Google Scholar 

  32. Kakoki M, Kim HS, Edgell CJ, Maeda N, Smithies O, Mattson DL. Amino acids as modulators of endothelium-derived nitric oxide. Am J Physiol Renal Physiol. 2006;291(2):F297–304. doi:10.1152/ajprenal.00417.2005.

    Article  PubMed  CAS  Google Scholar 

  33. Rajapakse NW, Mattson DL. Role of L-arginine in nitric oxide production in health and hypertension. Clin Exp Pharmacol Physiol. 2009;36(3):249–55. doi:10.1111/j.1440-1681.2008.05123.x.

    Article  PubMed  CAS  Google Scholar 

  34. Yang Z, Kaye DM. Endothelial dysfunction and impaired L-arginine transport in hypertension and genetically predisposed normotensive subjects. Trends Cardiovasc Med. 2006;16(4):118–24. doi:10.1016/j.tcm.2006.02.003.

    Article  PubMed  CAS  Google Scholar 

  35. Schlaich MP, Parnell MM, Ahlers BA, Finch S, Marshall T, Zhang WZ, et al. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation. 2004;110(24):3680–6. doi:10.1161/01.CIR.0000149748.79945.52.

    Article  PubMed  CAS  Google Scholar 

  36. Chen PY, Sanders PW. Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension. 1993;22(6):812–8.

    Article  PubMed  CAS  Google Scholar 

  37. Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F, Strazzullo P. Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am J Hypertens. 2000;13(5 Pt 1):547–51.

    Article  PubMed  CAS  Google Scholar 

  38. Pallone TL, Mattson DL. Role of nitric oxide in regulation of the renal medulla in normal and hypertensive kidneys. Curr Opin Nephrol Hypertens. 2002;11(1):93–8.

    Article  PubMed  Google Scholar 

  39. Dye JF, Vause S, Johnston T, Clark P, Firth JA, D‘Souza SW, et al. Characterization of cationic amino acid transporters and expression of endothelial nitric oxide synthase in human placental microvascular endothelial cells. FASEB J. 2004;18(1):125–7. doi:10.1096/fj.02-0916fje.

    PubMed  CAS  Google Scholar 

  40. Greene B, Pacitti AJ, Souba WW. Characterization of L-arginine transport by pulmonary artery endothelial cells. Am J Physiol. 1993;264(4 Pt 1):L351–6.

    PubMed  CAS  Google Scholar 

  41. Kilberg MS, Stevens BR, Novak DA. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–65. doi:10.1146/annurev.nu.13.070193.001033.

    Article  PubMed  CAS  Google Scholar 

  42. Verrey F, Jack DL, Paulsen IT, Saier Jr MH, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999;172(3):181–92.

    Article  PubMed  CAS  Google Scholar 

  43. Kakoki M, Wang W, Mattson DL. Cationic amino acid transport in the renal medulla and blood pressure regulation. Hypertension. 2002;39(2):287–92.

    Article  PubMed  CAS  Google Scholar 

  44. Mattson DL, Meister CJ. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R991–7. doi:10.1152/ajpregu.00207.2005.

    Article  PubMed  CAS  Google Scholar 

  45. Verrey F, Ristic Z, Romeo E, Ramadan T, Makrides V, Dave MH, et al. Novel renal amino acid transporters. Annu Rev Physiol. 2005;67:557–72.

    Article  PubMed  CAS  Google Scholar 

  46. Broer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology. 2008;23:95–103.

    Article  PubMed  CAS  Google Scholar 

  47. Dall‘Asta V, Bussolati O, Sala R, Rotoli BM, Sebastio G, Sperandeo MP, et al. Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjects. Am J Physiol Cell Physiol. 2000;279(6):C1829–37.

    PubMed  Google Scholar 

  48. Deves R, Boyd CA. Transporters for cationic amino acids in animal cells, discovery, structure, and function. Physiol Rev. 1998;78:487–545.

    PubMed  CAS  Google Scholar 

  49. Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, et al. Vascular endothelial dysfunction resulting from l-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest. 2001;108(5):717–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Yang Z, Venardos K, Jones E, Morris BJ, Chin-Dusting J, Kaye DM. Identification of a novel polymorphism in the 3′UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction. Circulation. 2007;115(10):1269–74. doi:10.1161/CIRCULATIONAHA.106.665836.

    PubMed  CAS  Google Scholar 

  51. Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995;270(24):14399–404.

    Article  PubMed  CAS  Google Scholar 

  52. Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension. 2008;51(6):1605–10. doi:10.1161/hypertensionaha.107.108126.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P, Kohan DE, et al. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure. Hypertension. 2013;62(1):91–8. doi:10.1161/HYPERTENSIONAHA.113.01291.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Yagil C, Sapojnikov M, Kreutz R, Zurcher H, Ganten D, Yagil Y. Role of chromosome X in the Sabra rat model of salt-sensitive hypertension. Hypertension. 1999;33(1):261–5.

    Article  PubMed  CAS  Google Scholar 

  55. Altirriba J, Gasa R, Casas S, Ramirez-Bajo MJ, Ros S, Gutierrez-Dalmau A, et al. The role of transmembrane protein 27 (TMEM27) in islet physiology and its potential use as a beta cell mass biomarker. Diabetologia. 2010;53(7):1406–14. doi:10.1007/s00125-010-1728-6.

    Article  PubMed  CAS  Google Scholar 

  56. Esterhazy D, Akpinar P, Stoffel M. Tmem27 dimerization, deglycosylation, plasma membrane depletion, and the extracellular Phe-Phe motif are negative regulators of cleavage by Bace2. Biol Chem. 2012;393(6):473–84. doi:10.1515/hsz-2012-0104. This study identified sites of collectrin protein that determine its susceptibility to cleavage by Bace2 and may have implication for the manipulation of the stability of collectrin in certain disease states.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH/NIDDK T32 DK072922 Training Grant, Division of Nephrology, University of Virginia to P.L.C.

Compliance with Ethics Guidelines

Conflict of Interest

Pei-Lun Chu and Thu H. Le declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thu H. Le.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, PL., Le, T.H. Role of Collectrin, an ACE2 Homologue, in Blood Pressure Homeostasis. Curr Hypertens Rep 16, 490 (2014). https://doi.org/10.1007/s11906-014-0490-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0490-4

Keywords

Navigation