Skip to main content
Log in

Vasodilatory Mechanisms of Beta Receptor Blockade

  • Antihypertensive Agents: Mechanisms of Drug Action (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

An Erratum to this article was published on 15 August 2012

Abstract

Beta-blockers are widely prescribed for the treatment of a variety of cardiovascular pathologies. Compared to traditional beta-adrenergic antagonists, beta-blockers of the new generation exhibit ancillary properties such as vasodilation through different mechanisms. This translates into a more favorable hemodynamic profile. The relative affinities of beta-adrenoreceptor antagonists towards the three beta-adrenoreceptor isotypes matter for predicting their functional impact on vasomotor control. This review will focus on the mechanisms underlying beta-blocker-evoked vasorelaxation with a specific emphasis on agonist properties of beta3-adrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23:1121–31.

    Article  PubMed  CAS  Google Scholar 

  2. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43:521–31.

    Article  PubMed  CAS  Google Scholar 

  3. Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev. 2009;89:481–534.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1–12.

    PubMed  CAS  Google Scholar 

  5. Broeders MA, Doevendans PA, Bekkers BC, et al. Nebivolol: a third-generation beta-blocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation. 2000;102:677–84.

    Article  PubMed  CAS  Google Scholar 

  6. Ignarro LJ, Byrns RE, Trinh K, et al. Nebivolol: a selective beta(1)-adrenergic receptor antagonist that relaxes vascular smooth muscle by nitric oxide- and cyclic GMP-dependent mechanisms. Nitric Oxide. 2002;7:75–82.

    Article  PubMed  CAS  Google Scholar 

  7. Afonso RA, Patarrao RS, Macedo MP, et al. Carvedilol action is dependent on endogenous production of nitric oxide. Am J Hypertens. 2006;19:419–25.

    Article  PubMed  CAS  Google Scholar 

  8. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol. 2002;90:40L–8.

    Article  PubMed  CAS  Google Scholar 

  9. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79:1193–226.

    PubMed  CAS  Google Scholar 

  10. Kukovetz WR, Holzmann S, Wurm A, et al. Prostacyclin increases cAMP in coronary arteries. J Cyclic Nucleotide Res. 1979;5:469–76.

    PubMed  CAS  Google Scholar 

  11. Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987;92:639–46.

    Article  PubMed  CAS  Google Scholar 

  12. Ruan Y, Kan H, Malik KU. Beta adrenergic receptor stimulated prostacyclin synthesis in rabbit coronary endothelial cells is mediated by selective activation of phospholipase D: inhibition by adenosine 3'5'-cyclic monophosphate. J Pharmacol Exp Ther. 1997;281:1038–46.

    PubMed  CAS  Google Scholar 

  13. Parkington HC, Coleman HA, Tare M. Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res. 2004;49:509–14.

    Article  PubMed  CAS  Google Scholar 

  14. Nardi A, Olesen SP. BK channel modulators: a comprehensive overview. Curr Med Chem. 2008;15:1126–46.

    Article  PubMed  CAS  Google Scholar 

  15. Dora KA. Coordination of vasomotor responses by the endothelium. Circ J. 2010;74:226–32.

    Article  PubMed  CAS  Google Scholar 

  16. Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 2009;202:330–44.

    Article  PubMed  CAS  Google Scholar 

  17. • Prysyazhna O, Rudyk O, Eaton P. Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med. 2012;18:286–90. This study is important because it brings novel evidence of the impact of EDH(F) on hemodynamic parameters.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268:C799–822.

    PubMed  CAS  Google Scholar 

  19. Randall MD, McCulloch AI. The involvement of ATP-sensitive potassium channels in beta-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed. Br J Pharmacol. 1995;115:607–12.

    Article  PubMed  CAS  Google Scholar 

  20. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 1997;77:1165–232.

    PubMed  CAS  Google Scholar 

  21. Wellman GC, Quayle JM, Standen NB. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol. 1998;507:117–29.

    Article  PubMed  CAS  Google Scholar 

  22. Garland CJ, Yarova PL, Jimenez-Altayo F, et al. Vascular hyperpolarization to beta-adrenoceptor agonists evokes spreading dilatation in rat isolated mesenteric arteries. Br J Pharmacol. 2011;164:913–21.

    Article  PubMed  CAS  Google Scholar 

  23. Wang YG, Dedkova EN, Steinberg SF, et al. Beta 2-adrenergic receptor signaling acts via NO release to mediate ACh-induced activation of ATP-sensitive K+ current in cat atrial myocytes. J Gen Physiol. 2002;119:69–82.

    Article  PubMed  CAS  Google Scholar 

  24. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol. 1948;153:586–600.

    PubMed  CAS  Google Scholar 

  25. Bylund DB, Eikenberg DC, Hieble JP, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46:121–36.

    PubMed  CAS  Google Scholar 

  26. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science. 1989;245:1118–21.

    Article  PubMed  CAS  Google Scholar 

  27. Heusch G, Deussen A, Schipke J, et al. Alpha 1- and alpha 2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol. 1984;6:961–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hamasaki J, Tsuneyoshi I, Katai R, Hidaka T, Boyle WA, Kanmura Y. Dual alpha(2)-adrenergic agonist and alpha(1)-adrenergic antagonist actions of dexmedetomidine on human isolated endothelium-denuded gastroepiploic arteries. Anesth Analg. 2002;94:1434–40. table.

    PubMed  CAS  Google Scholar 

  29. Jackson WF, Boerman EM, Lange EJ, et al. Smooth muscle alpha1D-adrenoceptors mediate phenylephrine-induced vasoconstriction and increases in endothelial cell Ca2+ in hamster cremaster arterioles. Br J Pharmacol. 2008;155:514–24.

    Article  PubMed  CAS  Google Scholar 

  30. Xiao XH, Rand MJ. Alpha 2-adrenoceptor agonists enhance vasoconstrictor responses to alpha 1-adrenoceptor agonists in the rat tail artery by increasing the influx of Ca2+. Br J Pharmacol. 1989;98:1032–8.

    Article  PubMed  CAS  Google Scholar 

  31. Figueroa XF, Poblete MI, Boric MP, et al. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. Br J Pharmacol. 2001;134:957–68.

    Article  PubMed  CAS  Google Scholar 

  32. Pimentel AM, Costa CA, Carvalho LC, et al. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Vascul Pharmacol. 2007;46:353–9.

    Article  PubMed  CAS  Google Scholar 

  33. Egleme C, Godfraind T, Miller RC. Enhanced responsiveness of rat isolated aorta to clonidine after removal of the endothelial cells. Br J Pharmacol. 1984;81:16–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lipe S, Summers RJ. Autoradiographic analysis of the distribution of beta-adrenoceptors in the dog splenic vasculature. Br J Pharmacol. 1986;87:603–9.

    Article  PubMed  CAS  Google Scholar 

  35. Molenaar P, Jones CR, McMartin LR, et al. Autoradiographic localization and densitometric analysis of beta-1 and beta-2 adrenoceptors in the canine left anterior descending coronary artery. J Pharmacol Exp Ther. 1988;246:384–93.

    PubMed  CAS  Google Scholar 

  36. Molenaar P, Malta E, Jones CR, et al. Autoradiographic localization and function of beta-adrenoceptors on the human internal mammary artery and saphenous vein. Br J Pharmacol. 1988;95:225–33.

    Article  PubMed  CAS  Google Scholar 

  37. Chruscinski A, Brede ME, Meinel L, et al. Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol. 2001;60:955–62.

    PubMed  CAS  Google Scholar 

  38. Rybin VO, Xu X, Lisanti MP, et al. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;75:41447–57.

    Article  Google Scholar 

  39. Xiang Y, Rybin VO, Steinberg SF, et al. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem. 2002;277:34280–6.

    Article  PubMed  CAS  Google Scholar 

  40. Trochu JN, Leblais V, Rautureau Y, et al. Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol. 1999;128:69–76.

    Article  PubMed  CAS  Google Scholar 

  41. Dessy C, Moniotte S, Ghisdal P, et al. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation. 2004;110:948–54.

    Article  PubMed  CAS  Google Scholar 

  42. Dessy C, Saliez J, Ghisdal P, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005;112:1198–205.

    Article  PubMed  CAS  Google Scholar 

  43. Rozec B, Serpillon S, Toumaniantz G, et al. Characterization of beta3-adrenoceptors in human internal mammary artery and putative involvement in coronary artery bypass management. J Am Coll Cardiol. 2005;46:351–9.

    Article  PubMed  CAS  Google Scholar 

  44. Viard P, Macrez N, Coussin F, et al. Beta-3 adrenergic stimulation of L-type Ca(2+) channels in rat portal vein myocytes. Br J Pharmacol. 2000;129:1497–505.

    Article  PubMed  CAS  Google Scholar 

  45. Mori A, Miwa T, Sakamoto K, et al. Pharmacological evidence for the presence of functional beta(3)-adrenoceptors in rat retinal blood vessels. Naunyn Schmiedebergs Arch Pharmacol. 2010;382:119–26.

    Article  PubMed  CAS  Google Scholar 

  46. Moniotte S, Vaerman JL, Kockx MM, et al. Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol. 2001;33:2121–33.

    Article  PubMed  CAS  Google Scholar 

  47. Gauthier C, Tavernier G, Charpentier F, et al. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98:556–62.

    Article  PubMed  CAS  Google Scholar 

  48. Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103:1649–55.

    Article  PubMed  CAS  Google Scholar 

  49. Black JW. Ahlquist and the development of beta-adrenoceptor antagonists. Postgrad Med J. 1976;52:11–3.

    PubMed  Google Scholar 

  50. Bristow MR. Treatment of chronic heart failure with beta-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res. 2011;109:1176–94.

    Article  PubMed  CAS  Google Scholar 

  51. Reiter MJ. Cardiovascular drug class specificity: beta-blockers. Prog Cardiovasc Dis. 2004;47:11–33.

    Article  PubMed  CAS  Google Scholar 

  52. Hayashi T, Juliet PA, Miyazaki-Akita A, et al. beta1 antagonist and beta2 agonist, celiprolol, restores the impaired endothelial dependent and independent responses and decreased TNFalpha in rat with type II diabetes. Life Sci. 2007;80:592–9.

    Article  PubMed  CAS  Google Scholar 

  53. Maack C, Tyroller S, Schnabel P, et al. Characterization of beta(1)-selectivity, adrenoceptor-G(s)-protein interaction and inverse agonism of nebivolol in human myocardium. Br J Pharmacol. 2001;132:1817–26.

    Article  PubMed  CAS  Google Scholar 

  54. • Rozec B, Erfanian M, Laurent K, et al. Nebivolol, a vasodilating selective beta(1)-blocker, is a beta(3)-adrenoceptor agonist in the nonfailing transplanted human heart. J Am Coll Cardiol. 2009;53:1532–8. This study reports for the first time a ß3-adrenoceptor agonism for Nebivolol, a ß-blocker with vasodilating properties, in human ventricular muscle. These data are important because beta3-adrenoceptors are increased in heart failure, and Nebivolol is recommended to treat this pathology even in elderly patients.

    Article  PubMed  CAS  Google Scholar 

  55. Stoleru L, Wijns W, van Eyll C, Bouvy T, et al. Effects of D-nebivolol and L-nebivolol on left ventricular systolic and diastolic function: comparison with D-L-nebivolol and atenolol. J Cardiovasc Pharmacol. 1993;22:183–90.

    Article  PubMed  CAS  Google Scholar 

  56. Fang Y, Nicol L, Harouki N, et al. Improvement of left ventricular diastolic function induced by beta-blockade: a comparison between nebivolol and metoprolol. J Mol Cell Cardiol. 2011;51:168–76.

    Article  PubMed  CAS  Google Scholar 

  57. Aragon JP, Condit ME, Bhushan S, et al. Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol. 2011;58:2683–91.

    Article  PubMed  CAS  Google Scholar 

  58. • Sorrentino SA, Doerries C, Manes C, et al. Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional beta1-blockade. J Am Coll Cardiol. 2011;57:601–11. This study provides novel evidence that nebivolol treatment is associated with beneficial effects on left ventricular dysfunction, cardiomyocyte hypertrophy, and survival early after myocardial infarction, likely independent of β1-adrenoceptos blocking effects. Those effects may be related, at least in part, to activation of β3-adrenoceptors by Nebivolol, which may increase eNOS-dependent NO availability both by preventing NADPH oxidase activation and stimulation of eNO.

    Article  PubMed  CAS  Google Scholar 

  59. de Groot AA, Mathy MJ, van Zwieten PA, et al. Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol. 2003;42:232–6.

    Article  PubMed  Google Scholar 

  60. Rozec B, Quang TT, Noireaud J, et al. Mixed beta3-adrenoceptor agonist and alpha1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol. 2006;147:699–706.

    Article  PubMed  CAS  Google Scholar 

  61. • Tran QT, Rozec B, Audigane L, et al. Investigation of the different adrenoceptor targets of nebivolol enantiomers in rat thoracic aorta. Br J Pharmacol. 2009;156:601–8. This work emphasizes that enantiomers of Nebivolol stimulate different receptor isotypes allowing for the racemate, the activation of multiple targets. This brings new perspectives in the clinical evaluation of Nebivolol and its enantiomers.

    Article  Google Scholar 

  62. Shafiei M, Omrani G, Mahmoudian M. Coexistence of at least three distinct beta-adrenoceptors in human internal mammary artery. Acta Physiol Hung. 2000;87:275–86.

    Article  PubMed  CAS  Google Scholar 

  63. MacDonald A, McLean M, MacAulay L, et al. Effects of propranolol and L-NAME on beta-adrenoceptor-mediated relaxation in rat carotid artery. J Auton Pharmacol. 1999;19:145–9.

    Article  PubMed  CAS  Google Scholar 

  64. Kou R, Michel T. Epinephrine regulation of the endothelial nitric-oxide synthase: roles of RAC1 and beta3-adrenergic receptors in endothelial NO signaling. J Biol Chem. 2007;282:32719–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Action de Recherche Concertée (06/11-338), Pôle d’Attraction Interuniversitaire (IUAP P6/30) of the Politique Scientifique Fédérale, Waleo, from the Region Wallonne, and the Fonds National de la Recherche Scientifique. CD is Senior Research Associate of the FNRS.

Disclosure

Drs. Rath, Balligand and Dessy reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessy Chantal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, G., Balligand, JL. & Chantal, D. Vasodilatory Mechanisms of Beta Receptor Blockade. Curr Hypertens Rep 14, 310–317 (2012). https://doi.org/10.1007/s11906-012-0278-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0278-3

Keywords

Navigation