Skip to main content
Log in

What can knockout mice contribute to an understanding of hypertension?

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The generation of knockout mice using homologous recombination in embryonic stem cells is a powerful tool for physiologic investigations. This experimental approach has provided unique insights into the study of hypertension. Studies using knockout mice have shed new light on blood pressure regulatory mechanisms, molecular mechanisms of end-organ injury, and genetic mechanisms for hypertension. With the development of more accessible approaches for carrying out sophisticated manipulation of the mouse genome, there will be continuing utility of this technique for future studies of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Koller B, Smithies O: Altering genes in animals by gene targeting. Annu Rev Immunol 1992, 10:705–730.

    Article  PubMed  CAS  Google Scholar 

  2. Peach M: Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 1977, 57:313–370.

    PubMed  CAS  Google Scholar 

  3. Kim H, Krege J, Kluckman K, et al.: Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A 1995, 92:2735–2739.

    Article  PubMed  CAS  Google Scholar 

  4. Krege J, John S, Langenbach L, et al.: Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995, 375:146–149.

    Article  PubMed  CAS  Google Scholar 

  5. Esther C, Howard T, Marino E, et al.: Mice lacking angiotensin converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 1996, 74:953–965.

    PubMed  CAS  Google Scholar 

  6. Timmermans P, Wong P, Chiu A, et al.: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993, 45:205–251.

    PubMed  CAS  Google Scholar 

  7. Sasamura H, Hein L, Krieger J, et al.: Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun 1992, 185:253–259.

    Article  PubMed  CAS  Google Scholar 

  8. Kakar S, Riel K, Neill J: Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Biochem Biophys Res Commun 1992, 185:688–692.

    Article  PubMed  CAS  Google Scholar 

  9. Gasc J-M, Shanmugam S, Sibony M, Corval P: Tissue-specific expression of type I angiotensin II subtypes: an in situ hybridization study. Hypertension 1994, 24:531–537.

    PubMed  CAS  Google Scholar 

  10. Kitami Y, Okura T, Marumoto K, et al.: Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun 1992, 188:446–452.

    Article  PubMed  CAS  Google Scholar 

  11. Llorens-Cortes C, Greenberg B, Huang H, Corvol P: Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension 1994, 24:538–548.

    PubMed  CAS  Google Scholar 

  12. Burson J, Aguilera G, Gross K, Sigmund C: Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol 1994, 267:E260-E267.

    PubMed  CAS  Google Scholar 

  13. Iwai N, Inagami T, Ohmichi N, et al.: Differential regulation of rat AT1a and AT1b receptor mRNA. Biochem Biophys Res Commun 1992, 188:298–303.

    Article  PubMed  CAS  Google Scholar 

  14. Krege J, Kim H, Moyer J, et al.: Angiotensin converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension 1997, 29:150–157. The authors used targeted gene duplication to demonstrate that enhanced levels of circulating ACE had no effect on resting blood pressure.

    PubMed  CAS  Google Scholar 

  15. Ito M, Oliverio M, Mannon P, et al.: Regulation of blood pressure by the type IA receptor for angiotensin II. Proc Natl Acad Sci U S A 1995, 92:3521–3525.

    Article  PubMed  CAS  Google Scholar 

  16. Iwai N, Inagami T: Identification of two subtypes in the rat type I angiotensin receptor. FEBS Lett 1992, 298:257–260.

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Li W, Yoshida H, et al.: Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol 1997, 272:F299-F304.

    PubMed  CAS  Google Scholar 

  18. Oliverio M, Kim H, Ito M, et al.: Reduced growth, abnormal kidney structure, and AT2 mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 1998, 95:15496–15501. One of two reports demonstrating the importance of AT1 receptorsignaling in maintaining kidney structure. Indirect evidence to support a blood pressure-lowering action of AT2 receptors is also provided.

    Article  PubMed  CAS  Google Scholar 

  19. Oliverio M, Best C, Kim H, et al.: Angiotensin II responses in AT1A Receptor-Deficient Mice: A Role for AT1B Receptors in Blood Pressure Regulation. Am J Physiol 1997, 272:F515-F520.

    PubMed  CAS  Google Scholar 

  20. Grady E, Sechi L, Griffn C, et al.: Expression of AT2 receptors in the developing rat fetus. J Clin Invest 1991, 88:921–933.

    PubMed  CAS  Google Scholar 

  21. Hein L, Barsh G, Pratt R, et al.: Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 1995, 377:744–747.

    Article  PubMed  CAS  Google Scholar 

  22. Ichiki T, Labosky P, Shiota C, et al.: Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995, 377:748–750.

    Article  PubMed  CAS  Google Scholar 

  23. Siragy H, Inagami T, Ichiki T, Carey R: Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci U S A 1999, 199:6506–6510. This study clearly demonstrates the potent actions of AT2 receptors to prevent AT1 receptor-mediated blood pressure elevation.

    Article  Google Scholar 

  24. Siragy H, Senbonmatsu T, Ichiki T, et al.: Increased renal vasodilator prostanoids prevent hypertension in mice lacking the angiotensin subtype-2 receptor. J Clin Invest 1999, 104:181–188. These studies suggest that the actions of AT2 receptor inhibition to raise pressure may be masked by AT1 receptor-mediated stimulation of vasodilator prostaglandin release.

    PubMed  CAS  Google Scholar 

  25. Haithock D, Jiao H, Cui X, et al.: Renal proximal tubular AT2 recetor:signaling and transport. J Am Soc Nephrol 1999, 11(suppl):69–74.

    Google Scholar 

  26. Baker K, Booz G, Dostal D: Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 1992, 54:227–241.

    Article  PubMed  CAS  Google Scholar 

  27. Thienelt C, Weinberg E, Bartunek J, Lorell B: Load-induced growth responses in isolated adult rat hearts. Role of the AT1 receptor. Circulation 1997, 95:2677–2683.

    PubMed  CAS  Google Scholar 

  28. Powell J, Clozel J, Muller R, et al.: Inhibitors of angiotensinconverting enzyme revent myointimal proliferation after vascular injury. Science 1989, 245:186–188.

    Article  PubMed  CAS  Google Scholar 

  29. Kudoh S, Komuro I, Hiroi Y, et al.: Mechanical stretch induces hypertrophic resonses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 1998, 272:24037–24043.

    Article  Google Scholar 

  30. Harada K, Komuro I, Shiojima I, et al.: Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998, 97:1952–1959. This study and the one by Hamawaki et al. [31•], show that pressureinduced cardiac hypertrophy is not ameliorated by the absence of AT1A receptors.

    PubMed  CAS  Google Scholar 

  31. Hamawaki M, Coffman T, Lashus A, et al.: Pressure-overload hypertrophy is unabated in mice devoid of AT1a receptors. Am J Physiol 1998, 274:H868-H873.

    PubMed  CAS  Google Scholar 

  32. Matsusaka T, Katori H, Inagami T, et al.: Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. J Clin Invest 1999, 103:1451–1458. Using a clever experimental design, these investigators demonstrate evidence for interactions between cardiac myocytes and fibroblasts in the development of cardiac fibrosis induced by angiotensin II.

    PubMed  CAS  Google Scholar 

  33. Harada K, Komuro I, Hayashi D, et al.: Angiotensin II type 1a receptor is involved in the occurence of reperfusion arrhythmias. Circulation 1998, 97:315–317.

    PubMed  CAS  Google Scholar 

  34. Jeunemaitre X, Soubrier F, Kotelevtsev Y, et al.: Molecular basis of human hypertension: role of angiotensinogen. Cell 1992, 71:169–180.

    Article  PubMed  CAS  Google Scholar 

  35. Inoue I, Nakajima T, William C, et al.: A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997, 99:1786–1797.

    PubMed  CAS  Google Scholar 

  36. Smithies O, Kim H-S: Targeted gene duplication and disruption for analyzing quantitative genetic traits in mice. Proc Natl Acad Sci U S A 1994, 91:3612–3615.

    Article  PubMed  CAS  Google Scholar 

  37. Rigat B, Hubert C, Alhenc-Gelas F, et al.: An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990, 86:1343–1346.

    PubMed  CAS  Google Scholar 

  38. Raynolds M, Bristow M, Bush E, et al.: Angiotensinconverting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 1993, 342:1073–1075.

    Article  PubMed  CAS  Google Scholar 

  39. Missouris C, Barley J, Jeffery S, et al.: Genetic risk for renal artery stenosis: association with deletion polymorphism in angiotensin 1-converting enzyme gene. Kidney Int 1996, 49:534–537.

    Article  PubMed  CAS  Google Scholar 

  40. Markus H, Barley J, Lunt R, et al.: Angiotensin-converting enzyme gene deletion polymorphism. A new risk factor for lacunar stroke but not carotid atheroma. Stroke 1995, 26:1329–1333.

    PubMed  CAS  Google Scholar 

  41. Ludwig E, Corneli P, Anderson J, et al.: Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 1995, 91:2120–2124.

    PubMed  CAS  Google Scholar 

  42. Kario K, Kanai N, Nishiuma S, Fuji T: Hypertensive nephropathy and the gene for angiotensin-converting enzyme. Arterioscler Thromb Vasc Biol 1997, 17:252–256.

    PubMed  CAS  Google Scholar 

  43. Doria A, Warram J, Krolewski A: Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes 1994, 43:690–694.

    Article  PubMed  CAS  Google Scholar 

  44. Niimura F, Labosky P, Kakuchi J, et al.: Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphlogy and growth factor regulation. J Clin Invest 1995, 66:2947–2954.

    Article  Google Scholar 

  45. Tsuchida S, Matsusaka T, Chen X, et al.: Murine double nullizygotes of the angiotensin type 1A and 1B receptors duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J. Clin Invest 1998, 1:755–760. One of two reports demonstrating the importance of AT1 receptorsignaling in maintaining kidney structure.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audoly, L.P., Le, T.H. & Coffman, T.M. What can knockout mice contribute to an understanding of hypertension?. Current Science Inc 2, 192–197 (2000). https://doi.org/10.1007/s11906-000-0081-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-000-0081-4

Keywords

Navigation