Skip to main content

Advertisement

Log in

Central Nervous System Complications of HIV in Children

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Buch S, Chivero ET, Hoare J, Jumare J, Nakasujja N, Mudenda V, et al. Proceedings from the NIMH symposium on “NeuroAIDS in Africa: neurological and neuropsychiatric complications of HIV.” J Neurovirol. 2016;22(5):699–702. https://doi.org/10.1007/s13365-016-0467-y.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mpango RS, Rukundo GZ, Muyingo SK, Gadow KD, Patel V, Kinyanda E. Prevalence, correlates for early neurological disorders and association with functioning among children and adolescents with HIV/AIDS in Uganda. BMC Psychiatry. 2019;19(1):34. https://doi.org/10.1186/s12888-019-2023-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A. 2013;110(33):13588–93. https://doi.org/10.1073/pnas.1308673110.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang B, Akhter S, Chaudhuri A, Kanmogne GD. HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling. Microvasc Res. 2009;77(2):212–9. https://doi.org/10.1016/j.mvr.2008.11.003.

    Article  CAS  PubMed  Google Scholar 

  5. Dhaka G, Sherwal BL, Saxena S, Rai Y, Chandra J. Current trends in opportunistic infections in children living with HIV/AIDS in a tertiary care hospital in Northern India. Indian J Sex Transm Dis AIDS. 2017;38(2):142–6. https://doi.org/10.4103/2589-0557.216992.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shafiq M, Mathad JS, Naik S, Alexander M, Yadana S, Araújo-Pereira M, et al. Association of maternal inflammation during pregnancy with birth outcomes and infant growth among women with or without HIV in India. JAMA Netw Open. 2021;4(12):e2140584. https://doi.org/10.1001/jamanetworkopen.2021.40584.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vyas P, Mathad JS, Leu CS, Naik S, Alexander M, Araújo-Pereira M, et al. Impact of HIV status on systemic inflammation during pregnancy. AIDS. 2021;35(14):2259–68. https://doi.org/10.1097/qad.0000000000003016.

    Article  CAS  PubMed  Google Scholar 

  8. Robertson KR, Su Z, Margolis DM, Krambrink A, Havlir DV, Evans S, et al. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology. 2010;74(16):1260–6. https://doi.org/10.1212/WNL.0b013e3181d9ed09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janssen RS, Nwanyanwu OC, Selik RM, Stehr-Green JK. Epidemiology of human immunodeficiency virus encephalopathy in the United States. Neurology. 1992;42(8):1472–6. https://doi.org/10.1212/wnl.42.8.1472.

    Article  CAS  PubMed  Google Scholar 

  10. Saylor D, Nakigozi G, Nakasujja N, Robertson K, Gray RH, Wawer MJ, et al. Peripheral neuropathy in HIV-infected and uninfected patients in Rakai, Uganda. Neurology. 2017;89(5):485–91. https://doi.org/10.1212/wnl.0000000000004136.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Benjamin-Damons NA. An investigation of HIV sensory neuropathy in children living with HIV. Johannesburg: University of the Witwatersrand; 2019.

    Google Scholar 

  12. Mekonnen GB, Birhane BM, Engdaw MT, Kindie W, Ayele AD, Wondim A. Predictors of a high incidence of opportunistic infections among HIV-infected children receiving antiretroviral therapy at Amhara regional state comprehensive specialized hospitals, Ethiopia: a multicenter institution-based retrospective follow-up study. Front Pediatr. 2023;11:1107321. https://doi.org/10.3389/fped.2023.1107321.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Melkamu MW, Gebeyehu MT, Afenigus AD, Hibstie YT, Temesgen B, Petrucka P, et al. Incidence of common opportunistic infections among HIV-infected children on ART at Debre Markos referral hospital, Northwest Ethiopia: a retrospective cohort study. BMC Infect Dis. 2020;20(1):50. https://doi.org/10.1186/s12879-020-4772-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Candiani TM, Pinto J, Cardoso CA, Carvalho IR, Dias AC, Carneiro M, et al. Impact of highly active antiretroviral therapy (HAART) on the incidence of opportunistic infections, hospitalizations and mortality among children and adolescents living with HIV/AIDS in Belo Horizonte, Minas Gerais State, Brazil. Cad Saude Publica. 2007;23(Suppl 3):S414–23. https://doi.org/10.1590/s0102-311x2007001500009.

    Article  PubMed  Google Scholar 

  15. Vreeman RC, McCoy BM, Lee S. Mental health challenges among adolescents living with HIV. J Int AIDS Soc. 2017;20(Suppl 3):21497. https://doi.org/10.7448/ias.20.4.21497.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patil G, Mbewe EG, Kabundula PP, Smith H, Mwanza-Kabaghe S, Buda A, et al. Longitudinal cognitive outcomes in children with HIV in Zambia: 2-year outcomes from the HIV-Associated Neurocognitive Disorders in Zambia (HANDZ) Study. J Acquir Immune Defic Syndr. 2022;91(2):217–25. https://doi.org/10.1097/qai.0000000000003052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitchell W. Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment Retard Dev Disabil Res Rev. 2001;7(3):211–6. https://doi.org/10.1002/mrdd.1029.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper ER, Hanson C, Diaz C, Mendez H, Abboud R, Nugent R, et al. Encephalopathy and progression of human immunodeficiency virus disease in a cohort of children with perinatally acquired human immunodeficiency virus infection. Women and Infants Transmission Study Group. J Pediatr. 1998;132(5):808–12. https://doi.org/10.1016/s0022-3476(98)70308-7.

    Article  CAS  PubMed  Google Scholar 

  19. Walker SY, Pierre RB, Christie CD, Chang SM. Neurocognitive function in HIV-positive children in a developing country. Int J Infect Dis. 2013;17(10):e862–7. https://doi.org/10.1016/j.ijid.2013.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koekkoek S, de Sonneville LM, Wolfs TF, Licht R, Geelen SP. Neurocognitive function profile in HIV-infected school-age children. Eur J Paediatr Neurol. 2008;12(4):290–7. https://doi.org/10.1016/j.ejpn.2007.09.002.

    Article  PubMed  Google Scholar 

  21. van Opstal SEM, Dogterom EJ, Wagener MN, Aarsen FK, Miedema HS, Roelofs P, et al. Neuropsychological and psychosocial functioning of children with perinatal HIV-infection in the Netherlands. Viruses. 2021;13(10):1947. https://doi.org/10.3390/v13101947.

  22. Gm A, Assefa G. Clinical and neuroimaging profile of HIV-1 encephalopathy in infancy and childhood in a sub-Saharan African country. Ethiop Med J. 2012;50(4):337–47.

    Google Scholar 

  23. Donald KA, Walker KG, Kilborn T, Carrara H, Langerak NG, Eley B, et al. HIV encephalopathy: pediatric case series description and insights from the clinic coalface. AIDS Res Ther. 2015;12(1):2. https://doi.org/10.1186/s12981-014-0042-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Epstein LG, Sharer LR, Oleske JM, Connor EM, Goudsmit J, Bagdon L, et al. Neurologic manifestations of human immunodeficiency virus infection in children. Pediatrics. 1986;78(4):678–87.

    Article  CAS  PubMed  Google Scholar 

  25. Chiriboga CA, Fleishman S, Champion S, Gaye-Robinson L, Abrams EJ. Incidence and prevalence of HIV encephalopathy in children with HIV infection receiving highly active anti-retroviral therapy (HAART). J Pediatr. 2005;146(3):402–7. https://doi.org/10.1016/j.jpeds.2004.10.021.

    Article  PubMed  Google Scholar 

  26. Innes S, Laughton B, van Toorn R, Otwombe K, Liberty A, Dobbels E, et al. Recovery of HIV encephalopathy in perinatally infected children on antiretroviral therapy. Dev Med Child Neurol. 2020;62(11):1309–16. https://doi.org/10.1111/dmcn.14639.

    Article  PubMed  Google Scholar 

  27. Mbewe EG, Kabundula PP, Mwanza-Kabaghe S, Buda A, Adams HR, Schneider C, et al. Socioeconomic status and cognitive function in children with HIV: evidence from the HIV-Associated Neurocognitive Disorders in Zambia (HANDZ) Study. J Acquir Immune Defic Syndr. 2022;89(1):56–63. https://doi.org/10.1097/qai.0000000000002825.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brew BJ, Dunbar N, Pemberton L, Kaldor J. Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis. 1996;174(2):294–8. https://doi.org/10.1093/infdis/174.2.294.

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslén M. Persistent intrathecal immune activation in HIV-1-infected individuals on antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;47(2):168–73. https://doi.org/10.1097/QAI.0b013e31815ace97.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80(15):1415–23. https://doi.org/10.1212/WNL.0b013e31828c2e9e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Molinaro M, Adams HR, Mwanza-Kabaghe S, Mbewe EG, Kabundula PP, Mweemba M, et al. Evaluating the relationship between depression and cognitive function among children and adolescents with HIV in Zambia. AIDS Behav. 2021;25(9):2669–79. https://doi.org/10.1007/s10461-021-03193-0.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buda A, Dean O, Adams HR, Mwanza-Kabaghe S, Potchen MJ, Mbewe EG, et al. Neighborhood-based socioeconomic determinants of cognitive impairment in Zambian children with HIV: a quantitative geographic information systems approach. J Pediatric Infect Dis Soc. 2021;10(12):1071–9. https://doi.org/10.1093/jpids/piab076.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kandawasvika GQ, Kuona P, Chandiwana P, Masanganise M, Gumbo FZ, Mapingure MP, et al. The burden and predictors of cognitive impairment among 6- to 8-year-old children infected and uninfected with HIV from Harare, Zimbabwe: a cross-sectional study. Child Neuropsychol. 2015;21(1):106–20. https://doi.org/10.1080/09297049.2013.876493.

    Article  CAS  PubMed  Google Scholar 

  34. WHO. Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring. World Health Organization; 2021. p. 84. https://www.who.int/publications/i/item/9789240022232.

  35. Ackermann C, Andronikou S, Laughton B, Kidd M, Dobbels E, Innes S, et al. White matter signal abnormalities in children with suspected HIV-related neurologic disease on early combination antiretroviral therapy. Pediatr Infect Dis J. 2014;33(8):e207–12. https://doi.org/10.1097/inf.0000000000000288.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–8. https://doi.org/10.1097/qad.0000000000000400.

    Article  CAS  PubMed  Google Scholar 

  37. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS. 2017;31(1):5–14. https://doi.org/10.1097/qad.0000000000001267.

    Article  CAS  PubMed  Google Scholar 

  38. Van den Hof M, Blokhuis C, Cohen S, Scherpbier HJ, Wit F, Pistorius MCM, et al. CNS penetration of ART in HIV-infected children. J Antimicrob Chemother. 2018;73(2):484–9. https://doi.org/10.1093/jac/dkx396.

    Article  CAS  PubMed  Google Scholar 

  39. Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, et al. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204(1):154–63. https://doi.org/10.1093/infdis/jir214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kapetanovic S, Griner R, Zeldow B, Nichols S, Leister E, Gelbard HA, et al. Biomarkers and neurodevelopment in perinatally HIV-infected or exposed youth: a structural equation model analysis. AIDS. 2014;28(3):355–64. https://doi.org/10.1097/qad.0000000000000072.

    Article  CAS  PubMed  Google Scholar 

  41. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27(9):1387–95. https://doi.org/10.1097/QAD.0b013e32836010bd.

    Article  CAS  PubMed  Google Scholar 

  42. Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol. 2012;18(5):388–99. https://doi.org/10.1007/s13365-012-0120-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thakur KT, Boubour A, Saylor D, Das M, Bearden DR, Birbeck GL. Global HIV neurology: a comprehensive review. AIDS. 2019;33(2):163–84. https://doi.org/10.1097/qad.0000000000001796.

    Article  PubMed  Google Scholar 

  44. Nichols SL. Central nervous system impact of perinatally acquired HIV in adolescents and adults: an update. Curr HIV/AIDS Rep. 2022;19(1):121–32. https://doi.org/10.1007/s11904-021-00598-3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hof MVd, Haar AMt, Caan MWA, Spijker R, Lee JHvd, Pajkrt D. Brain structure of perinatally HIV-infected patients on long-term treatment. A systematic review. Neurol Clin Pract. 2019;9(5):433–42. https://doi.org/10.1212/cpj.0000000000000637.

  46. Donald KA, Hoare J, Eley B, Wilmshurst JM. Neurologic complications of pediatric human immunodeficiency virus: implications for clinical practice and management challenges in the African setting. Semin Pediatr Neurol. 2014;21(1):3–11. https://doi.org/10.1016/j.spen.2014.01.004.

    Article  PubMed  Google Scholar 

  47. Blake Caldwell M, Oxtoby MJ, Simonds JR, Lindegren ML, Rogers MF. 1994 revised classification system for human immunodeficiency virus infection in children less than 13 years of age. 1994;43(RR-12):1–10. https://www.cdc.gov/mmwr/preview/mmwrhtml/00032890.htm. Accessed 2023

  48. Carroll A, Brew B. HIV-associated neurocognitive disorders: recent advances in pathogenesis, biomarkers, and treatment. F1000Res. 2017;6:312. https://doi.org/10.12688/f1000research.10651.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sherr L, Croome N, Castaneda KP, Bradshaw K, Romero RH. Developmental challenges in HIV infected children – an updated systematic review. Child Youth Serv Rev. 2014;45:74–89. https://doi.org/10.1016/j.childyouth.2014.03.040.

    Article  Google Scholar 

  50. Stadtler H, Shaw G, Neigh GN. Mini-review: elucidating the psychological, physical, and sex-based interactions between HIV infection and stress. Neurosci Lett. 2021;747:135698. https://doi.org/10.1016/j.neulet.2021.135698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Phillips N, Amos T, Kuo C, Hoare J, Ipser J, Thomas KG, et al. HIV-associated cognitive impairment in perinatally infected children: a meta-analysis. Pediatrics. 2016;138(5). https://doi.org/10.1542/peds.2016-0893.

  52. Nichols SL, Chernoff MC, Malee KM, Sirois PA, Woods SP, Williams PL, et al. Executive functioning in children and adolescents with perinatal HIV infection and perinatal HIV exposure. J Pediatric Infect Dis Soc. 2016;5(suppl 1):S15-s23. https://doi.org/10.1093/jpids/piw049.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. https://doi.org/10.1212/01.WNL.0000287431.88658.8b.

    Article  CAS  PubMed  Google Scholar 

  54. Hoare J, Phillips N, Joska JA, Paul R, Donald KA, Stein DJ, et al. Applying the HIV-associated neurocognitive disorder diagnostic criteria to HIV-infected youth. Neurology. 2016;87(1):86–93. https://doi.org/10.1212/wnl.0000000000002669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bearden DR, Meyer AC. Should the Frascati criteria for HIV-associated neurocognitive disorders be used in children? Neurology. 2016;87(1):17–8. https://doi.org/10.1212/wnl.0000000000002785.

    Article  PubMed  Google Scholar 

  56. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, et al. HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12(4):234–48. https://doi.org/10.1038/nrneurol.2016.27.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep. 2015;12(1):16–24. https://doi.org/10.1007/s11904-014-0255-3.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dean O, Buda A, Adams HR, Mwanza-Kabaghe S, Potchen MJ, Mbewe EG, et al. Brain magnetic resonance imaging findings associated with cognitive impairment in children and adolescents with human immunodeficiency virus in Zambia. Pediatr Neurol. 2020;102:28–35. https://doi.org/10.1016/j.pediatrneurol.2019.08.014.

    Article  PubMed  Google Scholar 

  59. Schneider CL, Mohajeri-Moghaddam S, Mbewe EG, Kabundula PP, Dean O, Buda A, et al. Cerebrovascular disease in children perinatally infected with human immunodeficiency virus in Zambia. Pediatr Neurol. 2020;112:14–21. https://doi.org/10.1016/j.pediatrneurol.2020.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Galgani S, Balestra P, Narciso P, Tozzi V, Sette P, Pau F, et al. Nimodipine plus zidovudine versus zidovudine alone in the treatment of HIV-1-associated cognitive deficits. AIDS. 1997;11(12):1520–1.

    CAS  PubMed  Google Scholar 

  61. Safety and tolerability of the antioxidant OPC-14117 in HIV-associated cognitive impairment. The Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders. Neurology. 1997;49(1):142–6. https://doi.org/10.1212/wnl.49.1.142.

  62. Heseltine PN, Goodkin K, Atkinson JH, Vitiello B, Rochon J, Heaton RK, et al. Randomized double-blind placebo-controlled trial of peptide T for HIV-associated cognitive impairment. Arch Neurol. 1998;55(1):41–51. https://doi.org/10.1001/archneur.55.1.41.

    Article  CAS  PubMed  Google Scholar 

  63. A randomized, double-blind, placebo-controlled trial of deprenyl and thioctic acid in human immunodeficiency virus-associated cognitive impairment. Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders. Neurology. 1998;50(3):645–51. https://doi.org/10.1212/wnl.50.3.645.

  64. Schifitto G, Sacktor N, Marder K, McDermott MP, McArthur JC, Kieburtz K, et al. Randomized trial of the platelet-activating factor antagonist lexipafant in HIV-associated cognitive impairment. Neurological AIDS Research Consortium. Neurology. 1999;53(2):391–6. https://doi.org/10.1212/wnl.53.2.391.

    Article  CAS  PubMed  Google Scholar 

  65. Sacktor N, Schifitto G, McDermott MP, Marder K, McArthur JC, Kieburtz K. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology. 2000;54(1):233–5. https://doi.org/10.1212/wnl.54.1.233.

    Article  CAS  PubMed  Google Scholar 

  66. Clifford DB, McArthur JC, Schifitto G, Kieburtz K, McDermott MP, Letendre S, et al. A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology. 2002;59(10):1568–73. https://doi.org/10.1212/01.wnl.0000034177.47015.da.

    Article  CAS  PubMed  Google Scholar 

  67. Schifitto G, Navia BA, Yiannoutsos CT, Marra CM, Chang L, Ernst T, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS. 2007;21(14):1877–86. https://doi.org/10.1097/QAD.0b013e32813384e8.

    Article  CAS  PubMed  Google Scholar 

  68. Schifitto G, Zhang J, Evans SR, Sacktor N, Simpson D, Millar LL, et al. A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology. 2007;69(13):1314–21. https://doi.org/10.1212/01.wnl.0000268487.78753.0f.

    Article  CAS  PubMed  Google Scholar 

  69. Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology. 2011;77(12):1135–42. https://doi.org/10.1212/WNL.0b013e31822f0412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sacktor N, Skolasky RL, Moxley R, Wang S, Mielke MM, Munro C, et al. Paroxetine and fluconazole therapy for HIV-associated neurocognitive impairment: results from a double-blind, placebo-controlled trial. J Neurovirol. 2018;24(1):16–27. https://doi.org/10.1007/s13365-017-0587-z.

    Article  CAS  PubMed  Google Scholar 

  71. Cole JW, Pinto AN, Hebel JR, Buchholz DW, Earley CJ, Johnson CJ, et al. Acquired immunodeficiency syndrome and the risk of stroke. Stroke. 2004;35(1):51–6. https://doi.org/10.1161/01.Str.0000105393.57853.11.

    Article  PubMed  Google Scholar 

  72. Wilmshurst JM, Donald KA, Eley B. Update on the key developments of the neurologic complications in children infected with HIV. Curr Opin HIV AIDS. 2014;9(6):533–8. https://doi.org/10.1097/coh.0000000000000101.

    Article  CAS  PubMed  Google Scholar 

  73. Hammond CK, Shapson-Coe A, Govender R, van Toorn R, Ndondo A, Wieselthaler N, et al. Moyamoya syndrome in South African children with HIV-1 infection. J Child Neurol. 2016;31(8):1010–7. https://doi.org/10.1177/0883073816635747.

    Article  PubMed  Google Scholar 

  74. Levy ML, Levy DM, Manna B: Pediatric Cerebral Aneurysm. StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK537085/. Accessed 2023.

  75. Patsalides AD, Wood LV, Atac GK, Sandifer E, Butman JA, Patronas NJ. Cerebrovascular disease in HIV-infected pediatric patients: neuroimaging findings. AJR Am J Roentgenol. 2002;179(4):999–1003. https://doi.org/10.2214/ajr.179.4.1790999.

    Article  PubMed  Google Scholar 

  76. Lallemant C, Halembokaka G, Baty G, Ngo-Giang-Huong N, Barin F, Le Coeur S. Impact of HIV/aids on child mortality before the highly active antiretroviral therapy era: a study in Pointe-Noire, Republic of Congo. J Trop Med. 2010;2010. https://doi.org/10.1155/2010/897176.

  77. Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the HHS Panel on Opportunistic Infections in HIV-Exposed and HIV-Infected Children—A Working Group of the Office of AIDS Research Advisory Council (OARAC). Guidelines for the prevention and treatment of opportunistic infections in children with and exposed to HIV. 2022. https://clinicalinfo.hiv.gov/sites/default/files/guidelines/archive/pediatric-oi-2022-09-02.pdf. Accessed 2023.

  78. Ravichandra KR, Praharaj BR, Agarwalla S. Opportunistic infections in HIV infected children and its correlation with CD4 count. Int J Contemp Pediatr. 2017;4(5):1743–7.

    Article  Google Scholar 

  79. Jones CE, Naidoo S, De Beer C, Esser M, Kampmann B, Hesseling AC. Maternal HIV infection and antibody responses against vaccine-preventable diseases in uninfected infants. JAMA. 2011;305(6):576–84. https://doi.org/10.1001/jama.2011.100.

    Article  CAS  PubMed  Google Scholar 

  80. WHO. WHO recommendations on the diagnosis of HIV infection in infants and children. World Health Organization; 2010. https://www.who.int/publications/i/item/9789241599085.

  81. Boivin MJ, Barlow-Mosha L, Chernoff MC, Laughton B, Zimmer B, Joyce C, et al. Neuropsychological performance in African children with HIV enrolled in a multisite antiretroviral clinical trial. AIDS. 2018;32(2):189–204. https://doi.org/10.1097/qad.0000000000001683.

    Article  PubMed  Google Scholar 

  82. Benki-Nugent S, Tamasha N, Mueni A, Laboso T, Wamalwa DC, Njuguna I, et al. Early antiretroviral therapy reduces severity but does not eliminate neurodevelopmental compromise in children with HIV. J Acquir Immune Defic Syndr. 2023;93(1):7–14. https://doi.org/10.1097/qai.0000000000003165.

    Article  CAS  PubMed  Google Scholar 

  83. Howland LC, Storm DS, Crawford SL, Ma Y, Gortmaker SL, Oleske JM. Negative life events: risk to health-related quality of life in children and youth with HIV infection. J Assoc Nurses AIDS Care. 2007;18(1):3–11. https://doi.org/10.1016/j.jana.2006.11.008.

    Article  PubMed  Google Scholar 

  84. Garvie PA, Brummel SS, Allison SM, Malee KM, Mellins CA, Wilkins ML, et al. Roles of medication responsibility, executive and adaptive functioning in adherence for children and adolescents with perinatally acquired HIV. Pediatr Infect Dis J. 2017;36(8):751–7. https://doi.org/10.1097/inf.0000000000001573.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Adams HR, Mwanza-Kabaghe S, Mbewe EG, Kabundula PP, Potchen MJ, Maggirwar S, et al. The HIV-Associated Neurocognitive Disorders in Zambia (HANDZ) Study: protocol of a research program in pediatric HIV in sub-Saharan Africa. medRxiv. Journal of HIV/AIDS & Infectious Diseases. 2019;5:1–18. https://doi.org/10.1101/19003590.

  86. WHO, UNAIDS, UNICEF. Progress report 2011: Global HIV/AIDS response. WHO UNAIDS UNICEF; 2011. https://www.unaids.org/sites/default/files/media_asset/20111130_UA_Report_en_1.pdf.

Download references

Acknowledgements

Dr. Bearden is supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number K23NS117310. Dr. Huff is supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health. Kristen Sportiello is supported by the University of Rochester School of Medicine and Dentistry.

Author information

Authors and Affiliations

Authors

Contributions

D.B., H.H., and K.S. wrote the main manuscript text, D.B. prepared Fig. 1 and Table 1, and K.S. prepared Fig. 2. All authors reviewed the manuscript.

Corresponding author

Correspondence to David R. Bearden.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huff, H.V., Sportiello, K. & Bearden, D.R. Central Nervous System Complications of HIV in Children. Curr HIV/AIDS Rep 21, 40–51 (2024). https://doi.org/10.1007/s11904-024-00689-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-024-00689-x

Keywords

Navigation