Skip to main content

Advertisement

Log in

Machine Learning and Clinical Informatics for Improving HIV Care Continuum Outcomes

  • eHealth and HIV (J Simoni and J Stekler, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This manuscript reviews the use of electronic medical record (EMR) data for HIV care and research along the HIV care continuum with a specific focus on machine learning methods and clinical informatics interventions.

Recent Findings

EMR-based clinical decision support tools and electronic alerts have been effectively utilized to improve HIV care continuum outcomes. Accurate EMR-based machine learning models have been developed to predict HIV diagnosis, retention in care, and viral suppression. Natural language processing (NLP) of clinical notes and data sharing between healthcare systems and public health agencies can enhance models for identifying people living with HIV who are undiagnosed or in need of relinkage to care. Challenges related to using these technologies include inconsistent EMR documentation, alert fatigue, and the potential for bias.

Summary

Clinical informatics and machine learning models are promising tools for improving HIV care continuum outcomes. Future research should focus on methods for combining EMR data with additional data sources (e.g., social media, geospatial data) and studying how to effectively implement predictive models for HIV care into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Office of the National Coordinator for Health Information Technology. Health IT Dashboard. https://dashboard.healthit.gov/apps/health-information-technology-data-summaries.php?state=National&cat9=all+data&cat1=ehr+adoption#summary-data. Accessed November 29, 2020. .

  2. Ahlstrom MG, Ronit A, Omland LH, Vedel S, Obel N. Algorithmic prediction of HIV status using nation-wide electronic registry data. EClinicalMedicine. 2019;17:100203. https://doi.org/10.1016/j.eclinm.2019.10.016.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feller DJ, Zucker J, Yin MT, Gordon P, Elhadad N. Using clinical notes and natural language processing for automated HIV risk assessment. J Acquir Immune Defic Syndr. 2018;77(2):160–6. https://doi.org/10.1097/QAI.0000000000001580.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Force UPST. Screening for HIV infection: US preventive services task force recommendation statement. JAMA. 2019;321(23):2326–36. https://doi.org/10.1001/jama.2019.6587.

    Article  Google Scholar 

  5. Branson BM, Handsfield HH, Lampe MA, Janssen RS, Taylor AW, Lyss SB, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep. 2006;55(RR-14):1–17 quiz CE1-4.

    PubMed  Google Scholar 

  6. Dailey AF, Hoots BE, Hall HI, Song R, Hayes D, Fulton P Jr, et al. Vital signs: human immunodeficiency virus testing and diagnosis delays - United States. MMWR Morb Mortal Wkly Rep. 2017;66(47):1300–6. https://doi.org/10.15585/mmwr.mm6647e1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lin J, Mauntel-Medici C, Heinert S, Baghikar S. Harnessing the power of the electronic medical record to facilitate an opt-out HIV screening program in an urban academic emergency department. J Public Health Manag Pract. 2017;23(3):264–8. https://doi.org/10.1097/PHH.0000000000000448.

    Article  PubMed  Google Scholar 

  8. Marcelin JR, Tan EM, Marcelin A, Scheitel M, Ramu P, Hankey R, et al. Assessment and improvement of HIV screening rates in a Midwest primary care practice using an electronic clinical decision support system: a quality improvement study. BMC Med Inform Decis Mak. 2016;16:76. https://doi.org/10.1186/s12911-016-0320-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ridgway JP, Almirol E, Schmitt J, Wesley-Madgett L, Pitrak D. A Clinical informatics approach to reengagement in HIV care in the emergency department. J Public Health Manag Pract. 2019;25(3):270–3. https://doi.org/10.1097/PHH.0000000000000844.

    Article  PubMed  Google Scholar 

  10. Shade SB, Steward WT, Koester KA, Chakravarty D, Myers JJ. Health information technology interventions enhance care completion, engagement in HIV care and treatment, and viral suppression among HIV-infected patients in publicly funded settings. J Am Med Inform Assoc. 2015;22(e1):e104–11. https://doi.org/10.1136/amiajnl-2013-002623.

    Article  PubMed  Google Scholar 

  11. Herwehe J, Wilbright W, Abrams A, Bergson S, Foxhood J, Kaiser M, et al. Implementation of an innovative, integrated electronic medical record (EMR) and public health information exchange for HIV/AIDS. J Am Med Inform Assoc. 2012;19(3):448–52. https://doi.org/10.1136/amiajnl-2011-000412.

    Article  PubMed  Google Scholar 

  12. Sweeney P, DiNenno EA, Flores SA, Dooley S, Shouse RL, Muckleroy S, et al. HIV Data to care-using public health data to improve HIV care and prevention. J Acquir Immune Defic Syndr. 2019;82(Suppl 1):S1–5. https://doi.org/10.1097/QAI.0000000000002059.

    Article  PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention. Data to Care. . https://www.cdc.gov/hiv/effective-interventions/respond/data-to-care?Sort=Title%3A%3Aasc&Intervention%20Name=Data%20to%20Care. Accessed November 20, 2020.

  14. Ridgway JP, Schmitt J, Almirol E, Millington M, Harding E, Pitrak D. Electronic data sharing between public health department and clinical providers improves accuracy of HIV retention data. Open Forum Infect Dis. 2017;4(Suppl 1):S421–2. Published 2017 Oct 4. https://doi.org/10.1093/ofid/ofx163.1059.

    Article  PubMed Central  Google Scholar 

  15. Ramachandran A, Kumar A, Koenig H, De Unanue A, Sung C, Walsh J, et al. Predictive analytics for retention in care in an urban HIV clinic. Sci Rep. 2020;10(1):6421. https://doi.org/10.1038/s41598-020-62729-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Olatosi B, Zhang J, Weissman S, Hu J, Haider MR, Li X. Using big data analytics to improve HIV medical care utilisation in South Carolina: a study protocol. BMJ Open. 2019;9(7):e027688. https://doi.org/10.1136/bmjopen-2018-027688.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oliwa T, Furner B, Schmitt J, Schneider J, Ridgway JP. Development of a predictive model for retention in HIV care using natural language processing of clinical notes. J Am Med Inform Assoc. 2020;28:104–12. https://doi.org/10.1093/jamia/ocaa220.

    Article  Google Scholar 

  18. Dessie ZG, Zewotir T, Mwambi H, North D. Modeling viral suppression, viral rebound and state-specific duration of HIV patients with CD4 count adjustment: parametric multistate frailty model approach. Infect Dis Ther. 2020;9(2):367–88. https://doi.org/10.1007/s40121-020-00296-4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gebrezgi MT, Fennie KP, Sheehan DM, Ibrahimou B, Jones SG, Brock P, et al. Development and validation of a risk prediction tool to identify people with HIV infection likely not to achieve viral suppression. AIDS Patient Care STDs. 2020;34(4):157–65. https://doi.org/10.1089/apc.2019.0224.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bisaso KR, Karungi SA, Kiragga A, Mukonzo JK, Castelnuovo B. A comparative study of logistic regression based machine learning techniques for prediction of early virological suppression in antiretroviral initiating HIV patients. BMC Med Inform Decis Mak. 2018;18(1):77. https://doi.org/10.1186/s12911-018-0659-x.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robbins GK, Johnson KL, Chang Y, Jackson KE, Sax PE, Meigs JB, et al. Predicting virologic failure in an HIV clinic. Clin Infect Dis. 2010;50(5):779–86. https://doi.org/10.1086/650537.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Semerdjian J, Lykopoulos K, Maas A, Harrell M, Priest J, Eitz-Ferrer P et al. Supervised machine learning to predict HIV outcomes using electronic health record and insurance claims data. AIDS 2018. 2018; http://programme.aids2018.org/Abstract/Abstract/4559.

  23. Puttkammer N, Simoni JM, Sandifer T, Chery JM, Dervis W, Balan JG, et al. An EMR-based alert with brief provider-led ART adherence counseling: promising results of the InfoPlus adherence pilot study among Haitian adults with HIV initiating ART. AIDS Behav. 2020;24(12):3320–36. https://doi.org/10.1007/s10461-020-02945-8.

    Article  PubMed  Google Scholar 

  24. Kamal S, Urata J, Cavassini M, Liu H, Kouyos R, Bugnon O, et al. Random forest machine learning algorithm predicts virologic outcomes among HIV infected adults in Lausanne, Switzerland using electronically monitored combined antiretroviral treatment adherence. AIDS Care. 2020:1–7. https://doi.org/10.1080/09540121.2020.1751045.

  25. Benitez AE, Musinguzi N, Bangsberg DR, Bwana MB, Muzoora C, Hunt PW, et al. Super learner analysis of real-time electronically monitored adherence to antiretroviral therapy under constrained optimization and comparison to non-differentiated care approaches for persons living with HIV in rural Uganda. J Int AIDS Soc. 2020;23(3):e25467. https://doi.org/10.1002/jia2.25467.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petersen ML, LeDell E, Schwab J, Sarovar V, Gross R, Reynolds N, et al. Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring. J Acquir Immune Defic Syndr. 2015;69(1):109–18. https://doi.org/10.1097/QAI.0000000000000548.

    Article  PubMed  PubMed Central  Google Scholar 

  27. National Academy of Medicine. The health of lesbian, gay, bisexual, and transgender (LGBT) people: building a foundation for better understanding. Washington, DC: National Academies Press; 2011. Available from: www.nap.edu/catalog.php?record_id=13128external.

    Google Scholar 

  28. Deutsch MB, Green J, Keatley J, Mayer G, Hastings J, Hall AM, et al. Electronic medical records and the transgender patient: recommendations from the World Professional Association for Transgender Health EMR Working Group. J Am Med Inform Assoc. 2013;20(4):700–3. https://doi.org/10.1136/amiajnl-2012-001472.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deutsch MB, Buchholz D. Electronic health records and transgender patients--practical recommendations for the collection of gender identity data. J Gen Intern Med. 2015;30(6):843–7. https://doi.org/10.1007/s11606-014-3148-7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown LA, Mu W, McCann J, Durborow S, Blank MB. Under-documentation of psychiatric diagnoses among persons living with HIV in electronic medical records. AIDS Care. 2020;33:1–5. https://doi.org/10.1080/09540121.2020.1713974.

    Article  Google Scholar 

  31. Ridgway J, Uvin A, Schmitt J, Oliwa T, Almirol E, Devlin S, et al. Natural language processing of clinical notes to identify mental illness and substance use among people living with HIV. JMIR Med Inform (forthcoming. https://doi.org/10.2196/23456.

  32. Paul DW, Neely NB, Clement M, Riley I, Al-Hegelan M, Phelan M, et al. Development and validation of an electronic medical record (EMR)-based computed phenotype of HIV-1 infection. J Am Med Inform Assoc. 2018;25(2):150–7. https://doi.org/10.1093/jamia/ocx061.

    Article  PubMed  Google Scholar 

  33. Greenberg AE, Hays H, Castel AD, Subramanian T, Happ LP, Jaurretche M, et al. Development of a large urban longitudinal HIV clinical cohort using a web-based platform to merge electronically and manually abstracted data from disparate medical record systems: technical challenges and innovative solutions. J Am Med Inform Assoc. 2016;23(3):635–43. https://doi.org/10.1093/jamia/ocv176.

    Article  PubMed  Google Scholar 

  34. Kitahata MM, Rodriguez B, Haubrich R, Boswell S, Mathews WC, Lederman MM, et al. Cohort profile: the centers for AIDS research network of integrated clinical systems. Int J Epidemiol. 2008;37(5):948–55. https://doi.org/10.1093/ije/dym231.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ancker JS, Edwards A, Nosal S, Hauser D, Mauer E, Kaushal R, et al. Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Med Inform Decis Mak. 2017;17(1):36. https://doi.org/10.1186/s12911-017-0430-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Embi PJ, Leonard AC. Evaluating alert fatigue over time to EHR-based clinical trial alerts: findings from a randomized controlled study. J Am Med Inform Assoc. 2012;19(e1):e145–8. https://doi.org/10.1136/amiajnl-2011-000743.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Isaac T, Weissman JS, Davis RB, Massagli M, Cyrulik A, Sands DZ, et al. Overrides of medication alerts in ambulatory care. Arch Intern Med. 2009;169(3):305–11. https://doi.org/10.1001/archinternmed.2008.551.

    Article  PubMed  Google Scholar 

  38. Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L, et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc. 2003;10(6):523–30. https://doi.org/10.1197/jamia.M1370.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kao C. Personal communication. March. 2017;22.

  40. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018;178(11):1544–7. https://doi.org/10.1001/jamainternmed.2018.3763.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53. https://doi.org/10.1126/science.aax2342.

    Article  CAS  PubMed  Google Scholar 

  42. Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981–3. https://doi.org/10.1056/NEJMp1714229.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866–72. https://doi.org/10.7326/M18-1990.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marcus JL, Sewell WC, Balzer LB, Krakower DS. Artificial intelligence and machine learning for HIV prevention: emerging approaches to ending the epidemic. Curr HIV/AIDS Rep. 2020;17(3):171–9. https://doi.org/10.1007/s11904-020-00490-6.

    Article  PubMed  Google Scholar 

  45. Prevention CfDCa. HIV and African Americans. 2020. https://www.cdc.gov/hiv/group/racialethnic/africanamericans/index.html. Accessed November 6 2020.

  46. Marcus JL, Hurley LB, Hare CB, Silverberg MJ, Volk JE. Disparities in uptake of HIV preexposure prophylaxis in a large integrated health care system. Am J Public Health. 2016;106(10):e2–3. https://doi.org/10.2105/AJPH.2016.303339.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eaton LA, Driffin DD, Kegler C, Smith H, Conway-Washington C, White D, et al. The role of stigma and medical mistrust in the routine health care engagement of black men who have sex with men. Am J Public Health. 2015;105(2):e75–82. https://doi.org/10.2105/AJPH.2014.302322.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Feagin J, Bennefield Z. Systemic racism and U.S. health care. Soc Sci Med. 2014;103:7–14. https://doi.org/10.1016/j.socscimed.2013.09.006.

    Article  PubMed  Google Scholar 

  49. Klinger EV, Carlini SV, Gonzalez I, Hubert SS, Linder JA, Rigotti NA, et al. Accuracy of race, ethnicity, and language preference in an electronic health record. J Gen Intern Med. 2015;30(6):719–23. https://doi.org/10.1007/s11606-014-3102-8.

    Article  PubMed  Google Scholar 

  50. Robinson WR, Renson A, Naimi AI. Teaching yourself about structural racism will improve your machine learning. Biostatistics. 2020;21(2):339–44. https://doi.org/10.1093/biostatistics/kxz040.

    Article  PubMed  Google Scholar 

  51. Young SD, Yu W, Wang W. Toward automating HIV identification: machine learning for rapid identification of HIV-related social media data. J Acquir Immune Defic Syndr. 2017;74(Suppl 2):S128–S31. https://doi.org/10.1097/QAI.0000000000001240.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Young LE, Fujimoto K, Schneider JA. HIV Prevention and sex behaviors as organizing mechanisms in a facebook group affiliation network among young black men who have sex with men. AIDS Behav. 2018;22(10):3324–34. https://doi.org/10.1007/s10461-018-2087-4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Young LE, Ramachandran A, Schumm LP, Khanna AS, Schneider JA. The potential of online social networking data for augmenting the study of high-risk personal networks among young men who have sex with men at-risk for HIV. Soc Networks. 2020;63:201–12. https://doi.org/10.1016/j.socnet.2020.06.003.

    Article  PubMed  Google Scholar 

  54. Zhang Q, Chai Y, Li X, Young SD, Zhou J. Using internet search data to predict new HIV diagnoses in China: a modelling study. BMJ Open. 2018;8(10):e018335. https://doi.org/10.1136/bmjopen-2017-018335.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nan Y, Gao Y. A machine learning method to monitor China's AIDS epidemics with data from Baidu trends. PLoS One. 2018;13(7):e0199697. https://doi.org/10.1371/journal.pone.0199697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ridgway JP, Almirol EA, Schmitt J, Schuble T, Schneider JA. Travel time to clinic but not neighborhood crime rate is associated with retention in care among HIV-positive patients. AIDS Behav. 2018;22(9):3003–8. https://doi.org/10.1007/s10461-018-2094-5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Duncan DT, Hickson DA, Goedel WC, Callander D, Brooks B, Chen YT, et al. The social context of HIV prevention and care among black men who have sex with men in three U.S. cities: the neighborhoods and networks (N2) cohort study. Int J Environ Res Public Health. 2019;16(11). https://doi.org/10.3390/ijerph16111922.

  58. Eberhart MG, Yehia BR, Hillier A, Voytek CD, Blank MB, Frank I, et al. Behind the cascade: analyzing spatial patterns along the HIV care continuum. J Acquir Immune Defic Syndr. 2013;64(Suppl 1):S42–51. https://doi.org/10.1097/QAI.0b013e3182a90112.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Phillips G 2nd, Birkett M, Kuhns L, Hatchel T, Garofalo R, Mustanski B. Neighborhood-level associations with HIV infection among young men who have sex with men in Chicago. Arch Sex Behav. 2015;44(7):1773–86. https://doi.org/10.1007/s10508-014-0459-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica P. Ridgway.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on eHealth and HIV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridgway, J.P., Lee, A., Devlin, S. et al. Machine Learning and Clinical Informatics for Improving HIV Care Continuum Outcomes. Curr HIV/AIDS Rep 18, 229–236 (2021). https://doi.org/10.1007/s11904-021-00552-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00552-3

Keywords

Navigation