Skip to main content

Advertisement

Log in

Application of Pathogen Discovery/Metagenomic Sequencing in CNS HIV

  • Central Nervous System and Cognition (SS Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurological conditions associated with HIV/AIDS including central nervous system (CNS), opportunistic infections (OI), chronic conditions including HIV-associated neurocognitive disorder, and cerebrospinal fluid (CSF) viral escape remain major contributors to morbidity and mortality worldwide. CNS infections in HIV-infected patients are often challenging to diagnose by traditional microbiological testing, impacting treatment and outcome.

Recent Findings

Recent advances in diagnostic techniques, including metagenomic next-generation sequencing (mNGS), are changing the landscape of microbiological testing, mainly in resource-rich settings. Pathogen discovery techniques offer a hypothesis-free approach to diagnostic testing, yielding comprehensive analysis of microbial genetic material. Given the extent of genetic material produced, deep sequencing tools not only hold promise in the diagnosis of CNS infections but also in defining key pathogenic steps which have previously been unanswered.

Summary

Significant challenges remain to implementing pathogen discovery techniques in routine clinical practice including cost, expertise and infrastructure needed including laboratory and bioinformatics support, and sample contamination risk. The use in resource-limited regions where the burden of CNS complications due to HIV/AIDS is highest remains poorly defined. Though, major opportunities utilizing pathogen discovery techniques exist to enhance surveillance and diagnosis and improve our understanding of mechanisms of neuroinvasion in CNS conditions associated with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • UNAIDS. http://rstesa.unaids.org/publications/global-publications/item/208-unaids-data-2019. Accessed 12/01/2019. This is an overview of the current global statistics on the HIV/AIDS epidemic.

  2. https://www.hiv.gov/hiv-basics/overview/data-and-trends/statistics. Accessed 12/01/2019.

  3. • Thakur KT, Boubour A, Saylor D, Das M, Bearden DR, Birbeck GL. Global HIV neurology: a comprehensive review. AIDS. 2019;33(2):163–84. https://doi.org/10.1097/QAD.0000000000001796. This is an update on neurological complications of HIV/AIDS globally.

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Lefterova MI, Suarez CJ, Banaei N, Pinsky BA. Next-generation sequencing for infectious disease diagnosis and management: a report of the Association for Molecular Pathology. J Mol Diagn. 2015;17(6):623–34. https://doi.org/10.1016/j.jmoldx.2015.07.004. This article provides information on NGS testing.

    Article  PubMed  CAS  Google Scholar 

  5. Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822. https://doi.org/10.1128/CMR.00003-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. •• Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40. https://doi.org/10.1056/NEJMoa1803396. This is the first prospective study on mNGS in CNS infections.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chiu CY, Coffey LL, Murkey J, Symmes K, Sample HA, Wilson MR, et al. Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg Infect Dis. 2017;23:1964–8.

    Article  CAS  Google Scholar 

  8. Murkey JA, Chew KW, Carlson M, et al. Hepatitis E virus-associated meningoencephalitis in a lung transplant recipient diagnosed by clinical metagenomic sequencing. Open Forum Infect Dis. 2017;4(3):ofx121.

    Article  Google Scholar 

  9. Fan S, Ren H, Wei Y, Mao C, Ma Z, Zhang L, et al. Next-generation sequencing of the cerebrospinal fluid in the diagnosis of neurobrucellosis. Int J Infect Dis. 2018;67:20–4. https://doi.org/10.1016/j.ijid.2017.11.028.

    Article  PubMed  CAS  Google Scholar 

  10. Edridge AWD, Deijs M, van Zeggeren IE, et al. Viral metagenomics on cerebrospinal fluid. Genes (Basel). 2019;10(5):332. Published 2019 Apr 30. https://doi.org/10.3390/genes10050332.

    Article  CAS  Google Scholar 

  11. Guan H, Shen A, Lv X, Yang X, Ren H, Zhao Y, et al. Detection of virus in CSF from the cases with meningoencephalitis by next-generation sequencing. J Neuro-Oncol. 2016;22(2):240–5. https://doi.org/10.1007/s13365-015-0390-7.

    Article  CAS  Google Scholar 

  12. Xing XW, Zhang JT, Ma YB, Chen XY, Wu L, Wang XL, et al. Evaluation of next-generation sequencing for the diagnosis of infections of the central nervous system caused by the neurotropic herpes viruses: a pilot study. Eur Neurol. 2018;80(5–6):283–8. https://doi.org/10.1159/000497319.

    Article  PubMed  CAS  Google Scholar 

  13. Fan S, Qiao X, Liu L, et al. Next-generation sequencing of cerebrospinal fluid for the diagnosis of neurocysticercosis. Front Neurol. 2018;9:471. Published 2018 Jun 19. https://doi.org/10.3389/fneur.2018.00471.

    Article  PubMed  PubMed Central  Google Scholar 

  14. •• Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol Neuroinflamm. 2016;3(4):e251. https://doi.org/10.1212/NXI.0000000000000251 Published 2016 Jun 13. This is a study evaluating the use of NGS on neuropathological samples.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramesh A, Nakielny S, Hsu J, et al. Metagenomic next-generation sequencing of samples from pediatric febrile illness in Tororo, Uganda. PLoS One. 2019;14(6):e0218318. Published 2019 Jun 20. https://doi.org/10.1371/journal.pone.0218318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. • Wilson MR, O’Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol. 2018;75(8):947–55. https://doi.org/10.1001/jamaneurol.2018.0463. This is a study evaluating mNGS in chronic meningitis cases of unknown etiology.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol. 2016;12(11):662–74. https://doi.org/10.1038/nrneurol.2016.149. This is a review on HIV-associated opportunistic CNS infection.

    Article  PubMed  CAS  Google Scholar 

  18. Thwaites GE. Advances in the diagnosis and treatment of tuberculous meningitis. Curr Opin Neurol. 2013;26(3):295–300. https://doi.org/10.1097/WCO.0b013e3283602814.

    Article  PubMed  CAS  Google Scholar 

  19. Méchaï F, Bouchaud O. Tuberculous meningitis: challenges in diagnosis and management. Rev Neurol (Paris). 2019;175(7–8):451–7. https://doi.org/10.1016/j.neurol.2019.07.007.

    Article  Google Scholar 

  20. • Wang S, Chen Y, Wang D, et al. The feasibility of metagenomic next-generation sequencing to identify pathogens causing tuberculous meningitis in cerebrospinal fluid. Front Microbiol. 2019;10:1993. https://doi.org/10.3389/fmicb.2019.01993 Published 2019 Sep 3. This study evaluated the performance of mNGS compared to other diagnostic modalities for CNS TB.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ajbani K, Kazi M, Naik S, Soman R, Shetty A, Rodrigues C. Utility of pyrosequencing for rapid detection of tubercular meningitis (TBM) and associated susceptibility directly from CSF specimens. Tuberculosis (Edinb). 2018;111:54–6. https://doi.org/10.1016/j.tube.2018.05.009.

    Article  CAS  Google Scholar 

  22. Faksri K, Xia E, Ong RT, et al. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from tuberculous meningitis and pulmonary tuberculosis patients. Sci Rep. 2018;8(1):4910. Published 2018 Mar 20. https://doi.org/10.1038/s41598-018-23337-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Inf Secur. 2018;76:225–40. https://doi.org/10.1016/j.jinf.2017.12.014.

    Article  Google Scholar 

  24. https://globalprojects.ucsf.edu/project/redefining-tuberculosis-meningitis-metagenomics-and-host-transciptomics. Accessed December 1, 2019.

  25. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf (Accessed on December 1, 2019).

  26. Adurthi S, Mahadevan A, Bantwal R, Satishchandra P, Ramprasad S, Sridhar H, et al. Utility of molecular and serodiagnostic tools in cerebral toxoplasmosis with and without tuberculous meningitis in AIDS patients: a study from South India. Ann Indian Acad Neurol. 2010;13:263–70.

    Article  Google Scholar 

  27. Hu Z, Weng X, Xu C, et al. Metagenomic next-generation sequencing as a diagnostic tool for toxoplasmic encephalitis. Ann Clin Microbiol Antimicrob. 2018;17(1):45. Published 2018 Dec 26. https://doi.org/10.1186/s12941-018-0298-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Berger JR, Aksamit AJ, Clifford DB, Davis L, Koralnik IJ, Sejvar JJ, et al. PML diagnostic criteria: consensus statement from the AAN neuroinfectious disease section. Neurology. 2013;80:1430–8. https://doi.org/10.1212/WNL.0b013e31828c2fa1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marzocchetti A, Di Giambenedetto S, Cingolani A, Ammassari A, Cauda R, De Luca A. Reduced rate of diagnostic positive detection of JC virus DNA in cerebrospinal fluid in cases of suspected progressive multifocal leukoencephalopathy in the era of potent antiretroviral therapy. J Clin Microbiol. 2005;43:4175–7. https://doi.org/10.1128/JCM.43.8.4175-4177.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhai S, Brew BJ. Progressive multifocal leukoencephalopathy. Handb Clin Neurol. 2018;152:123–37. https://doi.org/10.1016/B978-0-444-63849-6.00010-4.

    Article  PubMed  Google Scholar 

  31. Xia H, Guan Y, Zaongo SD, et al. Progressive multifocal leukoencephalopathy diagnosed by metagenomic next-generation sequencing of cerebrospinal fluid in an HIV patient. Front Neurol. 2019;10:1202. Published 2019 Nov 21. https://doi.org/10.3389/fneur.2019.01202.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •• Chalkias S, Gorham JM, Mazaika E, et al. ViroFind: a novel target-enrichment deep-sequencing platform reveals a complex JC virus population in the brain of PML patients. PLoS One. 2018;13(1):e0186945. https://doi.org/10.1371/journal.pone.0186945 Published 2018 Jan 23. This study utilizes deep sequencing to identify JC virus population in the brains of healthy controls and patients with PML.

  33. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81. https://doi.org/10.1016/S1473-3099(17)30243-8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rajasingham R, Wake RM, Beyene T, Katende A, Letang E, Boulware DR. Cryptococcal meningitis diagnostics and screening in the era of point-of-care laboratory testing. J Clin Microbiol. 2019;57(1):e01238–18. Published 2019 Jan 2. https://doi.org/10.1128/JCM.01238-18.

    Article  PubMed  PubMed Central  Google Scholar 

  35. https://www.who.int/hiv/pub/guidelines/cryptococcal-disease/en/. Accessed December 2nd, 2019.

  36. • Xing XW, Zhang JT, Ma YB, Zheng N, Yang F, Yu SY. Apparent performance of metagenomic next-generation sequencing in the diagnosis of cryptococcal meningitis: a descriptive study. J Med Microbiol. 2019;68(8):1204–10. https://doi.org/10.1099/jmm.0.000994. This study studies the performance on NGS in the diagnosis of Cryptococcal meningitis.

    Article  PubMed  CAS  Google Scholar 

  37. Gasser O, Bihl FK, Wolbers M, Loggi E, Steffen I, Hirsch HH, et al. HIV patients developing primary CNS lymphoma lack EBV-specific CD4+ T cell function irrespective of absolute CD4+ T cell counts. PLoS Med. 2007;4(3):e96. https://doi.org/10.1371/journal.pmed.0040096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rubenstein J, Ferreri AJ, Pittaluga S. Primary lymphoma of the central nervous system: epidemiology, pathology and current approaches to diagnosis, prognosis and treatment. Leuk Lymphoma. 2008;49(Suppl 1(0 1)):43–51. https://doi.org/10.1080/10428190802311441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bednar MM, Sturdevant CB, Tompkins LA, Arrildt KT, Dukhovlinova E, Kincer LP, et al. Compartmentalization, viral evolution, and viral latency of HIV in the CNS. Curr HIV/AIDS Rep. 2015;12(2):262–71. https://doi.org/10.1007/s11904-015-0265-9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mukerji SS, Misra V, Lorenz DR, Uno H, Morgello S, Franklin D, et al. Impact of antiretroviral regimens on cerebrospinal fluid viral escape in a prospective multicohort study of antiretroviral therapy-experienced human immunodeficiency virus-1-infected adults in the United States. Clin Infect Dis. 2018;67(8):1182–90. https://doi.org/10.1093/cid/ciy267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zarkali A, Gorgoraptis N, Miller R, John L, Merve A, Thust S, et al. CD8+ encephalitis: a severe but treatable HIV-related acute encephalopathy. Pract Neurol. 2017;17(1):42–6. https://doi.org/10.1136/practneurol-2016-001483.

    Article  PubMed  Google Scholar 

  42. Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, et al. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis. 2013;57(1):101–8. https://doi.org/10.1093/cid/cit175.

    Article  PubMed  CAS  Google Scholar 

  43. •• Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341–55. https://doi.org/10.1038/s41576-019-0113-7. This is a review on the technique, application and challenges of clinical metagenomics.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. •• Miller S, Chiu C, Rodino KG, Miller MB. Point-counterpoint: should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J Clin Microbiol. 2020;58(3):e01739–19. Published 2020 Feb 24. https://doi.org/10.1128/JCM.01739-19. An expert opinion artivle on the use of metagenomic next generation sequencing for infectious disease diagnosis by international experts.

  45. • Fulton BD, Proudman DG, Sample HA, et al. Exploratory analysis of the potential for advanced diagnostic testing to reduce healthcare expenditures of patients hospitalized with meningitis or encephalitis. PLoS One. 2020;15(1):e0226895. Published 2020 Jan 15. https://doi.org/10.1371/journal.pone.0226895. An analysis of healthcare expenditures for patients with meningoencephalitis with advanced diagnostic testing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran T. Thakur.

Ethics declarations

Conflict of Interest

The author declares that he/she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Central Nervous System and Cognition

Appendix. Select References on Methodology and Application of Pathogen Discovery Techniques

Appendix. Select References on Methodology and Application of Pathogen Discovery Techniques

Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–338. doi:https://doi.org/10.1146/annurev-pathmechdis-012418-012751

Schlaberg S, Chiu CY, Miller S, Procop GW, Weinstock G. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch Pathol Lab Med. 2017; 141(6):776–786. https://doi.org/10.5858/arpa.2016-0539-RA

Yohe S, Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med. 2017;141(11):1544–1557. doi:https://doi.org/10.5858/arpa.2016-0501-RA

Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018;24 (4):335–341. doi:https://doi.org/10.1016/j.cmi.2017.10.013

Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122(1):e59. doi:https://doi.org/10.1002/cpmb.59

Ilyas M. Next-Generation Sequencing in Diagnostic Pathology. Pathobiology. 2017;84(6):292–305. doi:https://doi.org/10.1159/000480089

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, K.T. Application of Pathogen Discovery/Metagenomic Sequencing in CNS HIV. Curr HIV/AIDS Rep 17, 507–513 (2020). https://doi.org/10.1007/s11904-020-00514-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00514-1

Keywords

Navigation