Skip to main content

Advertisement

Log in

Cognitive Impairment and Persistent CNS Injury in Treated HIV

  • Complications of Antiretroviral Therapy (G McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The implementation of combination antiretroviral therapy (cART) has changed HIV infection into a chronic illness, conveying extensive benefits, including greater longevity and advantages for the central nervous system (CNS). However, studies increasingly confirm that the CNS gains are incomplete, with reports of persistent immune activation affecting the CNS despite suppression of plasma HIV RNA. The rate of cognitive impairment is unchanged, although severity is generally milder than in the pre-cART era. In this review, we discuss cognitive outcomes from recently published clinical HIV studies, review observations on HIV biomarkers for cognitive change, and emphasize longitudinal imaging findings. Additionally, we summarize recent studies on CNS viral invasion, CD8 encephalitis, and how CNS involvement during the earliest stages of infection may set the stage for later cognitive manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance,•• Of major importance

  1. Antiretroviral Therapy Cohort C. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372(9635):293–9. doi:10.1016/S0140-6736(08)61113-7.

    Article  Google Scholar 

  2. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, et al. Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr. 2007;45(2):174–82. doi:10.1097/QAI.0b013e318042e1ee.

    Article  PubMed  Google Scholar 

  3. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27(9):1387–95. doi:10.1097/QAD.0b013e32836010bd.

    Article  CAS  PubMed  Google Scholar 

  4. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS. 2014;28(1):67–72. doi:10.1097/01.aids.0000432467.54003.f7. Demonstration of incomplete efficacy of cART in settling intracerebral immune activation despite virologic suppression.

    Article  CAS  PubMed  Google Scholar 

  5. Tate DF, Conley J, Paul RH, Coop K, Zhang S, Zhou W, et al. Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging Behav. 2010;4(1):68–79. doi:10.1007/s11682-009-9086-z.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nir TM, Jahanshad N, Busovaca E, Wendelken L, Nicolas K, Thompson PM, et al. Mapping white matter integrity in elderly people with HIV. Hum Brain Mapp. 2014;35(3):975–92. doi:10.1002/hbm.22228.

    Article  PubMed  Google Scholar 

  7. Su T, Caan MW, Wit FW, Schouten J, Geurtsen GJ, Cole JH, et al. White matter structure alterations in HIV-1-infected men with sustained suppression of viraemia on treatment. AIDS. 2016;30(2):311–22. doi:10.1097/QAD.0000000000000945.

    Article  CAS  PubMed  Google Scholar 

  8. Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, et al. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One. 2014;9(2):e88591. doi:10.1371/journal.pone.0088591.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Soontornniyomkij V, Umlauf A, Chung SA, Cochran ML, Soontornniyomkij B, Gouaux B, et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS. 2014;28(9):1297–306. doi:10.1097/QAD.0000000000000262. Tackling cerebral small vessel disease may be one of major challenge in aging people living with HIV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chow FC. HIV infection, vascular disease, and stroke. Semin Neurol. 2014;34(1):35–46. doi:10.1055/s-0034-1372341.

    Article  PubMed  Google Scholar 

  11. Benjamin LA, Corbett EL, Connor MD, Mzinganjira H, Kampondeni S, Choko A, et al. HIV, antiretroviral treatment, hypertension, and stroke in Malawian adults: a case-control study. Neurology. 2016;86(4):324–33. doi:10.1212/WNL.0000000000002278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards NJ, Grill MF, Choi HA, Ko NU. Frequency and risk factors for cerebral arterial disease in a HIV/AIDS neuroimaging cohort. Cerebrovasc Dis. 2016;41(3-4):170–6. doi:10.1159/000442755.

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez J, Goldman J, Dwork AJ, Elkind MS, Marshall RS, Morgello S. Brain arterial remodeling contribution to nonembolic brain infarcts in patients with HIV. Neurology. 2015;85(13):1139–45. doi:10.1212/WNL.0000000000001976.

    Article  CAS  PubMed  Google Scholar 

  14. Chow FC, Boscardin WJ, Mills C, Ko N, Carroll C, Price RW, et al. Cerebral vasoreactivity is impaired in treated, virally suppressed HIV-infected individuals. AIDS. 2016;30(1):45–55. doi:10.1097/QAD.0000000000000875.

    PubMed  Google Scholar 

  15. Marquine MJ, Umlauf A, Rooney AS, Fazeli PL, Gouaux BD, Paul Woods S, et al. The veterans aging cohort study index is associated with concurrent risk for neurocognitive impairment. J Acquir Immune Defic Syndr. 2014;65(2):190–7. doi:10.1097/QAI.0000000000000008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valcour VG, Rubin LH, Obasi MU, Maki PM, Peters MG, Levin S, et al. Liver fibrosis linked to cognitive performance in HIV and hepatitis C. J Acquir Immune Defic Syndr. 2016. doi:10.1097/QAI.0000000000000957.

    Google Scholar 

  17. Sheppard DP, Iudicello JE, Bondi MW, Doyle KL, Morgan EE, Massman PJ, et al. Elevated rates of mild cognitive impairment in HIV disease. J Neurovirol. 2015;21(5):576–84. doi:10.1007/s13365-015-0366-7.

    Article  CAS  PubMed  Google Scholar 

  18. Wright EJ, Grund B, Cysique LA, Robertson KR, Brew BJ, Collins G, et al. Factors associated with neurocognitive test performance at baseline: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med. 2015;16 Suppl 1:97–108. doi:10.1111/hiv.12238. International cohort points out that development of cognitive impairment could be relatively early after infection before significant immune compromise.

    Article  CAS  PubMed  Google Scholar 

  19. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology. 2016;86(4):334–40. doi:10.1212/WNL.0000000000002277.

    Article  CAS  PubMed  Google Scholar 

  20. Heaton RK, Franklin Jr DR, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis. 2015;60(3):473–80. doi:10.1093/cid/ciu862.

    Article  PubMed  Google Scholar 

  21. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. doi:10.1212/01.WNL.0000287431.88658.8b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heaton RK, Clifford DB, Franklin Jr DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96. doi:10.1212/WNL.0b013e318200d727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grant I, Franklin Jr DR, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82(23):2055–62. doi:10.1212/WNL.0000000000000492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woods SP, Iudicello JE, Moran LM, Carey CL, Dawson MS, Grant I, et al. HIV-associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology. 2008;22(1):110–7. doi:10.1037/0894-4105.22.1.110.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chiao S, Rosen HJ, Nicolas K, Wendelken LA, Alcantar O, Rankin KP, et al. Deficits in self-awareness impact the diagnosis of asymptomatic neurocognitive impairment in HIV. AIDS Res Hum Retroviruses. 2013;29(6):949–56. doi:10.1089/AID.2012.0229.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murray KJ, Cummins D, Batterham M, Trotter G, Healey L, O’Connor CC. Does the informal caregiver notice HIV associated mild cognitive impairment in people living with HIV? AIDS Care. 2016;28(2):221–7. doi:10.1080/09540121.2015.1084989.

    Article  PubMed  Google Scholar 

  27. McDonnell J, Haddow L, Daskalopoulou M, Lampe F, Speakman A, Gilson R, et al. Minimal cognitive impairment in UK HIV-positive men who have sex with men: effect of case definitions and comparison with the general population and HIV-negative men. J Acquir Immune Defic Syndr. 2014;67(2):120–7. doi:10.1097/QAI.0000000000000273.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anderson AM, Harezlak J, Bharti A, Mi D, Taylor MJ, Daar ES, et al. Plasma and cerebrospinal fluid biomarkers predict cerebral injury in hiv-infected individuals on stable combination antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;69(1):29–35. doi:10.1097/QAI.0000000000000532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McGuire JL, Gill AJ, Douglas SD, Kolson DL, Group CHA-RTER. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. J Neurovirol. 2015;21(4):439–48. doi:10.1007/s13365-015-0333-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O, et al. Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest. 2016. doi:10.1172/JCI84456.

    Google Scholar 

  31. Grauer OM, Reichelt D, Gruneberg U, Lohmann H, Schneider-Hohendorf T, Schulte-Mecklenbeck A, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid. Ann Clin Transl Neurol. 2015;2(9):906–19. doi:10.1002/acn3.227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Oliveira MF, Murrel B, Perez-Santiago J, Vargas M, Ellis RJ, Letendre S, et al. Circulating HIV DNA correlates with neurocognitive impairment in older HIV-infected adults on suppressive ART. Sci Rep. 2015;5:17094. doi:10.1038/srep17094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cysique LA, Hey-Cunningham WJ, Dermody N, Chan P, Brew BJ, Koelsch KK. Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PLoS One. 2015;10(4):e0120488. doi:10.1371/journal.pone.0120488.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peterson J, Gisslen M, Zetterberg H, Fuchs D, Shacklett BL, Hagberg L, et al. Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection. PLoS One. 2014;9(12):e116081. doi:10.1371/journal.pone.0116081.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine. 2016;3:135–40. doi:10.1016/j.ebiom.2015.11.036.

    Article  PubMed  Google Scholar 

  36. Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA, et al. Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiol Aging. 2014;35(7):1755–68. doi:10.1016/j.neurobiolaging.2014.01.008. The accelerated rate of atrophy highlights structural changes or neuronal damage can take place during preclinical state.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kallianpur KJ, Colby D, Jahanshad N, Fletcher JL, Ananworanich J, Clifford K et al. Brain volumetric changes after 2 years of ART initiated during acute HIV infection. Abstract CROI 2016.

  38. Sailasuta N, Ananworanich J, Lerdlum S, Sithinamsuwan P, Fletcher JL, Tipsuk S, et al. Neuronal-glia markers by magnetic resonance spectroscopy in HIV before and after combination antiretroviral therapy. J Acquir Immune Defic Syndr. 2015. doi:10.1097/QAI.0000000000000779.

    Google Scholar 

  39. Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T, et al. Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol. 2013;19(3):209–18. doi:10.1007/s13365-013-0162-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, et al. Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J Neurovirol. 2014;20(3):294–303. doi:10.1007/s13365-014-0246-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seider TR, Gongvatana A, Woods AJ, Chen H, Porges EC, Cummings T, et al. Age exacerbates HIV-associated white matter abnormalities. J Neurovirol. 2015. doi:10.1007/s13365-015-0386-3.

    PubMed  PubMed Central  Google Scholar 

  42. Wade BS, Valcour VG, Wendelken-Riegelhaupt L, Esmaeili-Firidouni P, Joshi SH, Gutman BA, et al. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort. Neuroimage Clin. 2015;9:564–73. doi:10.1016/j.nicl.2015.10.006.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wade BS, Valcour V, Busovaca E, Esmaeili-Firidouni P, Joshi SH, Wang Y et al. Subcortical shape and volume abnormalities in an elderly HIV+ cohort. Proc SPIE Int Soc Opt Eng. 2015;9417. doi:10.1117/12.2082241.

  44. Plessis SD, Vink M, Joska JA, Koutsilieri E, Stein DJ, Emsley R. HIV infection and the fronto-striatal system: a systematic review and meta-analysis of fMRI studies. AIDS. 2014;28(6):803–11. doi:10.1097/QAD.0000000000000151.

    Article  PubMed  Google Scholar 

  45. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206(2):275–82. doi:10.1093/infdis/jis326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11(3):e1004720. doi:10.1371/journal.ppat.1004720. A demonstration of CNS as a potential reservoir for viral replication, contributing to additive difficulty in eradication strategy.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moore DJ, Letendre SL, Morris S, Umlauf A, Deutsch R, Smith DM, et al. Neurocognitive functioning in acute or early HIV infection. J Neurovirol. 2011;17(1):50–7. doi:10.1007/s13365-010-0009-y.

    Article  PubMed  Google Scholar 

  48. Ragin AB, Wu Y, Gao Y, Keating S, Du H, Sammet C, et al. Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol. 2015;2(1):12–21. doi:10.1002/acn3.136.

    Article  PubMed  Google Scholar 

  49. Kore I, Ananworanich J, Valcour V, Fletcher JL, Chalermchai T, Paul R, et al. Neuropsychological impairment in acute HIV and the effect of immediate antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;70(4):393–9. doi:10.1097/QAI.0000000000000746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wright PW, Vaida FF, Fernandez RJ, Rutlin J, Price RW, Lee E, et al. Cerebral white matter integrity during primary HIV infection. AIDS. 2015;29(4):433–42. doi:10.1097/QAD.0000000000000560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207(11):1703–12. doi:10.1093/infdis/jit088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li S, Wu Y, Keating SM, Du H, Sammet CL, Zadikoff C, et al. Matrix metalloproteinase levels in early HIV infection and relation to in vivo brain status. J Neurovirol. 2013;19(5):452–60. doi:10.1007/s13365-013-0197-3.

    Article  CAS  PubMed  Google Scholar 

  53. Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R, et al. Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology. 2014;83(18):1592–600. doi:10.1212/WNL.0000000000000932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suh J, Sinclair E, Peterson J, Lee E, Kyriakides TC, Li FY, et al. Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection. J Neuroinflammation. 2014;11:199. doi:10.1186/s12974-014-0199-y.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peluso MJ, Valcour V, Ananworanich J, Sithinamsuwan P, Chalermchai T, Fletcher JL, et al. Absence of cerebrospinal fluid signs of neuronal injury before and after immediate antiretroviral therapy in acute HIV infection. J Infect Dis. 2015;212(11):1759–67. doi:10.1093/infdis/jiv296.

    Article  PubMed  Google Scholar 

  56. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26(14):1765–74. doi:10.1097/QAD.0b013e328355e6b2.

    Article  CAS  PubMed  Google Scholar 

  57. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8. doi:10.1086/650538.

    Article  PubMed  Google Scholar 

  58. Beguelin C, Vazquez M, Bertschi M, Yerly S, de Jong D, Rauch A, et al. Viral escape in the CNS with multidrug-resistant HIV-1. J Int AIDS Soc. 2014;17(4 Suppl 3):19745. doi:10.7448/IAS.17.4.19745.

    PubMed  PubMed Central  Google Scholar 

  59. Mangioni D, Muscatello A, Sabbatini F, Soria A, Rossi M, Bisi L, et al. A case of cerebrospinal fluid viral escape on a dual antiretroviral regimen: worth the risk? Clin Infect Dis. 2014;59(11):1655–6. doi:10.1093/cid/ciu679.

    Article  PubMed  Google Scholar 

  60. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202(12):1819–25. doi:10.1086/657342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gutmann C, Cusini A, Gunthard HF, Fux C, Hirschel B, Decosterd LA, et al. Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: the role of compartment and CD4-nadir. AIDS. 2010;24(15):2347–54. doi:10.1097/QAD.0b013e32833db9a1.

    CAS  PubMed  Google Scholar 

  62. Vernazza P, Daneel S, Schiffer V, Decosterd L, Fierz W, Klimkait T, et al. The role of compartment penetration in PI-monotherapy: the Atazanavir-Ritonavir Monomaintenance (ATARITMO) Trial. AIDS. 2007;21(10):1309–15. doi:10.1097/QAD.0b013e32814e6b1c.

    Article  CAS  PubMed  Google Scholar 

  63. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–8. doi:10.1097/QAD.0000000000000400. Ongoing low level viral replication was present in a sizable portion of PLWH on long term suppressive cART, which was associated with significant elevation of immune marker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Calcagno A, Atzori C, Romito A, Ecclesia S, Imperiale D, Audagnotto S, et al. Cerebrospinal fluid biomarkers in patients with plasma HIV RNA below 20 copies/mL. J Int AIDS Soc. 2014;17(4 Suppl 3):19719. doi:10.7448/IAS.17.4.19719.

    PubMed  PubMed Central  Google Scholar 

  65. Tong CY, Costelloe S, Hubb J, Mullen J, O’Shea S, Marta M, et al. Deep sequencing of HIV-1 in cerebrospinal fluid. Clin Infect Dis. 2015;61(6):1022–5. doi:10.1093/cid/civ417.

    Article  PubMed  Google Scholar 

  66. Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G, et al. Encephalitis with infiltration by CD8+ lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol. 2013;23(5):525–33. doi:10.1111/bpa.12038. The emergence of CD8 encephalitis expands the consideration in managing patients present with neurologic symptoms in cART era with a totally different treatment strategy.

    Article  PubMed  Google Scholar 

  67. Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, et al. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis. 2013;57(1):101–8. doi:10.1093/cid/cit175.

    Article  CAS  PubMed  Google Scholar 

  68. Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ. Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS. 2016;30(4):591–600. doi:10.1097/QAD.0000000000000951.

    Article  CAS  PubMed  Google Scholar 

  69. Ndhlovu LC, Umaki T, Chew GM, Chow DC, Agsalda M, Kallianpur KJ, et al. Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND). J Neurovirol. 2014;20(6):571–82. doi:10.1007/s13365-014-0279-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin-Blondel G, Brassat D, Bauer J, Lassmann H, Liblau RS. CCR5 blockade for neuroinflammatory diseases—beyond control of HIV. Nat Rev Neurol. 2016;12(2):95–105. doi:10.1038/nrneurol.2015.248.

    Article  CAS  PubMed  Google Scholar 

  71. Winston A, Bouliotis G, Kulasegaram R, Clarke A, Post5 FA, Nelson M et al. A randomised controlled trial of maraviroc-intensified bPI ART on cognitive function. Abstract CROI 2016.

  72. Sacktor N, Skolasky RL, Haughey N, Munro C, Moxley R, Steiner J et al. Paroxetine and fluconazole therapy for HAND: a double-blind, placebo-controlled trial. Abstract CROI 2016.

  73. Dufour CA, Marquine MJ, Fazeli PL, Henry BL, Ellis RJ, Grant I, et al. Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J Neurovirol. 2013;19(5):410–7. doi:10.1007/s13365-013-0184-8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Livelli A, Orofino GC, Calcagno A, Farenga M, Penoncelli D, Guastavigna M, et al. Evaluation of a cognitive rehabilitation protocol in HIV patients with associated neurocognitive disorders: efficacy and stability over time. Front Behav Neurosci. 2015;9:306. doi:10.3389/fnbeh.2015.00306.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by K24-MH098759 (VV) and R01MH095613 (VV and SS). Dr. Chan is supported by funds from the National Institutes of Mental Health, US NIH T32AG023481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Valcour.

Ethics declarations

Conflict of Interest

Phillip Chan reports grants from National Institute of Health (NIH): National Institute of Mental Health (NIMH) T32AG023481.

Joanna Hellmuth declares she has no conflict of interest.

Serena Spudich reports grants from National Institute of Health (NIH): National Institute of Mental Health (NIMH) and National Institute of Neurological Disorders and Stroke (NINDS).

Victor Valcour reports grants from National Institute of Health (NIH): National Institute of Mental Health (NIMH) and National Institute of Neurological Disorders and Stroke (NINDS) and consultant fees from ViiV Healthcare and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications of Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, P., Hellmuth, J., Spudich, S. et al. Cognitive Impairment and Persistent CNS Injury in Treated HIV. Curr HIV/AIDS Rep 13, 209–217 (2016). https://doi.org/10.1007/s11904-016-0319-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0319-7

Keywords

Navigation