Skip to main content
Log in

Acute Kidney Injury in Acute on Chronic Liver Failure Versus Decompensated Cirrhosis—What Is the Difference?

  • Review
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hepatorenal syndrome (HRS), the severe manifestation of renal injury in patients with cirrhosis and acute on chronic liver failure (ACLF), is characterized by decreased renal blood flow and glomerular filtration rate. Manuscript will elaborate how acute kidney injury (AKI) is different in ACLF and cirrhosis.

Recent Findings

We have role of biomarkers in differentiating HRS AKI from chronic kidney disease (CKD) in cirrhosis as well as ACLF patients. Medical therapy, timing of extracorporeal therapies, and role of liver transplant in patients of cirrhosis and ACLF.

Summary

ACLF patients usually have structural form of AKI as compared to functional-volume responsive AKI in patients with cirrhosis. Combination of terlipressin and albumin augments renal recovery faster than other vasopressor therapies. But, liver transplant always remain the definitive treatment of progressive renal failure in patients with cirrhosis as well as ACLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

HRS:

Hepatorenal syndrome

AKI:

Acute kidney injury

CKD:

Chronic kidney disease

AKD:

Acute kidney disease

GFR:

Glomerular filtration rate

RIFLE:

Risk, Injury, Failure, Loss, End-stage renal failure

AKIN:

Acute Kidney Injury Network

KDIGO:

Kidney Disease Improving Global Outcomes

MAP:

Mean arterial pressure

sCr:

Serum creatinine

ATN:

Acute Tubular necrosis

PAMP:

Pathogen-associated molecular patterns

DAMP:

Damage-associated molecular pattern

CTP:

Child Turcotte Pugh

MELD:

Model for end-stage liver disease

NGAL:

Neutrophil gelatinase-associated lipocalin

KIM:

Kidney injury molecule

OPN:

Osteopontin

TIMP:

Tissue inhibitors of metalloproteinases

MDRD:

Modification of diet in renal disease

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Maiwall R, Kumar S, Chandel SS, et al. AKI in patients with acute on chronic liver failure is different from acute decompensation of cirrhosis. Hepatol Int. 2015;9(4):627–39. https://doi.org/10.1007/s12072-015-9653-x. This reference shows that AKI in ACLF has structural component and early detection and timely management is necessary.

    Article  PubMed  Google Scholar 

  2. Khatua CR, Panigrahi S, Mishra D, et al. Acute kidney injury at admission is a better predictor of mortality than its persistence at 48 h in patients with acute-on-chronic liver failure. J Clin Transl Hepatol. 2018;6(4):396–401.https://doi.org/10.14218/JCTH.2018.00035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol. 2010;21(2):345–52. https://doi.org/10.1681/ASN.2009060636.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boima V. Creatinine based equations and glomerular filtration rate: interpretation and clinical relevance. Ghana Med J. 2016;50(3):119–21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopes JA, Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J. 2013;6(1):8–14.

    Article  PubMed  Google Scholar 

  6. Kim JH, Kim YS, Choi MS, et al. Prediction of clinical outcomes after kidney transplantation from deceased donors with acute kidney injury: a comparison of the KDIGO and AKIN criteria. BMC Nephrol. 2017;18(1):39. https://doi.org/10.1186/s12882-017-0461-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amathieu R, Al-Khafaji A, Sileanu FE, et al. Significance of oliguria in critically ill patients with chronic liver disease. Hepatology. 2017;66(5):1592–600. https://doi.org/10.1002/hep.29303.

    Article  PubMed  Google Scholar 

  8. Maiwall R, Pasupuleti SSR, Chandel SS, et al. Co-orchestration of acute kidney injury and non-kidney organ failures in critically ill patients with cirrhosis. Liver Int. 2021;41(6):1358–69. https://doi.org/10.1111/liv.14809.

    Article  CAS  PubMed  Google Scholar 

  9. Tonon M, Rosi S, Gambino CG, et al. Natural history of acute kidney disease in patients with cirrhosis. J Hepatol. 2021;74(3):578–83. https://doi.org/10.1016/j.jhep.2020.08.037.

    Article  PubMed  Google Scholar 

  10. Napoleone L, Solé C, Juanola A, et al. Patterns of kidney dysfunction in acute-on-chronic liver failure: relationship with kidney and patients’ outcome. Hepatol Commun. 2022;6(8):2121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• Bassegoda O, Huelin P, Ariza X, et al. Development of chronic kidney disease after acute kidney injury in patients with cirrhosis is common and impairs clinical outcomes. J Hepatol. 2020;72(6):1132–9. https://doi.org/10.1016/j.jhep.2019.12.020. This reference shows spectrum of AKI and natural history of progression to CKD.

    Article  PubMed  Google Scholar 

  12. • Angeli P, Garcia-Tsao G, Nadim MK, Parikh CR. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. J Hepatol. 2019;71(4):811–22. https://doi.org/10.1016/j.jhep.2019.07.002. This reference provides existing guidelines for AKI in patients of cirrhosis.

    Article  PubMed  Google Scholar 

  13. Jiang QQ, Han MF, Ma K, et al. Acute kidney injury in acute-on-chronic liver failure is different from in decompensated cirrhosis. World J Gastroenterol. 2018;24(21):2300–10. https://doi.org/10.3748/wjg.v24.i21.2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Clària J, Stauber RE, Coenraad MJ, et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64:1249–64.

    Article  Google Scholar 

  15. Investigators from the EASL-CLIF Consortium, Grifols Chair and European Foundation for the Study of Chronic Liver Failure (EF-Clif), Arroyo V, Angeli P, Moreau R, et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol. 2021;74:670–85.

    Article  Google Scholar 

  16. Choudhury A, Kumar M, Sharma BC, et al. APASL ACLF working party. Systemic inflammatory response syndrome in acute-on-chronic liver failure: relevance of ‘golden window’: a prospective study. J Gastroenterol Hepatol. 2017;32:1989–97.

    Article  CAS  PubMed  Google Scholar 

  17. CANONIC Study Investigators of the EASL Clif Consortium; Grifols Chair European Foundation for the Study of Chronic Liver Failure (EF Clif), Moreau R, Clària J, Aguilar F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J Hepatol. 2020;72:688–701.

    Article  Google Scholar 

  18. Zaccherini G, Aguilar F, Caraceni P, et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF. J Hepatol. 2021;74:1117–31.

    Article  CAS  PubMed  Google Scholar 

  19. CANONIC Study Investigators of the EASL Clif Consortium, Grifols Chair and the European Foundation for the Study of Chronic Liver Failure (EF Clif), Clària J, Moreau R, Fenaille F, et al. Orchestration of tryptophan-kynurenine pathway, acute decompensation, and acute-on-chronic liver failure in cirrhosis. Hepatology. 2019;69:1686–701.

    Article  Google Scholar 

  20. Fickert P, Rosenkranz AR. Cholemic nephropathy reloaded. Semin Liver Dis. 2020;40:91–100.

    Article  PubMed  Google Scholar 

  21. Bräsen JH, Mederacke YS, Schmitz J, et al. Cholemic nephropathy causes acute kidney injury and is accompanied by loss of aquaporin 2 in collecting ducts. Hepatology. 2019;69:2107–19.

    Article  PubMed  Google Scholar 

  22. Morales-Alvarez MC. Nephrotoxicity of antimicrobials and antibiotics. Adv Chronic Kidney Dis. 2020;27:31–7.

    Article  PubMed  Google Scholar 

  23. Patschan D, Patschan S, Buschmann I, et al. Loop diuretics in acute kidney injury prevention, therapy, and risk stratification. Kidney Blood Press Res. 2019;44:457–64.

    Article  CAS  PubMed  Google Scholar 

  24. Sadat U. Radiographic contrast-media-induced acute kidney injury: pathophysiology and prophylactic strategies. ISRN Radiol. 2013;16(2013):496438. https://doi.org/10.5402/2013/496438.

    Article  Google Scholar 

  25. Zang H, Liu F, Liu H, et al. Incidence, risk factors and outcomes of acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) of underlying cirrhosis. Hepatol Int. 2016;10:807–18.

    Article  PubMed  Google Scholar 

  26. Arora V, Vijayaraghavan R, Maiwall R, et al. Paracentesis-induced circulatory dysfunction with modest-volume paracentesis is partly ameliorated by albumin infusion in acute-on-chronic Liver Failure. Hepatology. 2020;72(3):1043–55. https://doi.org/10.1002/hep.31071.

    Article  CAS  PubMed  Google Scholar 

  27. • Singh SP, Maiwall R. MELD 3.0: A better score for liver allocation? Liver Transpl. 2023:. https://doi.org/10.1097/LVT.0000000000000180. This reference gives update about the serum creatinine and AKI in MELD, MELD NA, MELD 3.0.

  28. Solé C, Ma AT, Solà E, et al. Sequential changes in urinary biomarker levels in patients with cirrhosis and severe hepatorenal syndrome. Liver Int. 2021;41(11):2729–32. https://doi.org/10.1111/liv.15069.

    Article  CAS  PubMed  Google Scholar 

  29. Markwardt D, Holdt L, Steib C, et al. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. Hepatology. 2017;66:1232–41.

    Article  CAS  PubMed  Google Scholar 

  30. Maiwall R, Kumar A, Bhardwaj A, et al. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study. Liver Int. 2018;38(4):654–64. https://doi.org/10.1111/liv.13600.

    Article  CAS  PubMed  Google Scholar 

  31. Wan ZH, Wang JJ, You SL, et al. Cystatin C is a biomarker for predicting acute kidney injury in patients with acute-on-chronic liver failure. World J Gastroenterol. 2013;19(48):9432–8. https://doi.org/10.3748/wjg.v19.i48.9432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu J, Lin L, Ye C, et al. Serum NGAL is superior to cystatin C in predicting the prognosis of acute-on-chronic liver failure. Ann Hepatol. 2019;18(1):155–64. https://doi.org/10.5604/01.3001.0012.7907.

    Article  CAS  PubMed  Google Scholar 

  33. Lei L, Li LP, Zeng Z, et al. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci Rep. 2018;8(1):7962. https://doi.org/10.1038/s41598-018-26226-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. CANONIC Investigators, EASL CLIF Consortium, Ariza X, Graupera I, Coll M, et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol. 2016;65(1):57–65.

    Article  Google Scholar 

  35. Kulkarni AV, Sharma M, Kumar P, et al. Adipocyte fatty acid-binding protein as a predictor of outcome in alcohol-induced acute-on-chronic liver failure. J Clin Exp Hepatol. 2021;11(2):201–8. https://doi.org/10.1016/j.jceh.2020.07.010.

    Article  CAS  PubMed  Google Scholar 

  36. Levitsky J, Baker TB, Jie C, et al. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology. 2014;60(6):2017–26. https://doi.org/10.1002/hep.27346.

    Article  CAS  PubMed  Google Scholar 

  37. Levitsky J, Asrani SK, Abecassis M, et al. External Validation of a Pretransplant Biomarker Model (REVERSE) Predictive of renal recovery after liver transplantation. Hepatology. 2019;70(4):1349–59. https://doi.org/10.1002/hep.30667.

    Article  CAS  PubMed  Google Scholar 

  38. Maiwall R, Pasupuleti SSR, Hidam AK, et al. Non-resolution of acute kidney injury in the first week portends the development of chronic kidney disease in critically ill patients with cirrhosis. Aliment Pharmacol Ther. 2023: https://doi.org/10.1111/apt.17639

  39. Ferenbach DA, Bonventre JV. Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol Ther. 2016;12(Suppl 1(Suppl 1)):S41–8. https://doi.org/10.1016/j.nephro.2016.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Campion D, Rizzi F, Bonetto S, et al. Assessment of glomerular filtration rate in patients with cirrhosis: available tools and perspectives. Liver Int. 2022;42(11):2360–76. https://doi.org/10.1111/liv.15198.

    Article  PubMed  Google Scholar 

  41. Malbrain MLNG, Van Regenmortel N, Saugel B, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;22(8):66.

    Article  Google Scholar 

  42. Rice JA, Brewer J, Speaks T, Choi C, Lahsaei P, Romito BT. The POCUS consult: how point of care ultrasound helps guide medical decision making. Int J Gen Med. 2021;14:9789–806. https://doi.org/10.2147/IJGM.S339476.

    Article  PubMed  PubMed Central  Google Scholar 

  43. REVERSE-AKI study team, Vaara ST, Ostermann M, Bitker L, et al. Restrictive fluid management versus usual care in acute kidney injury (REVERSE-AKI): a pilot randomized controlled feasibility trial. Intensive Care Med. 2021;47:665–73. https://doi.org/10.1007/s00134-021-06401-6.

    Article  CAS  Google Scholar 

  44. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. https://doi.org/10.1056/NEJMoa062200.

    Article  Google Scholar 

  45. REVERSE Study Investigators, Boyer TD, Sanyal AJ, Wong F, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150(7):1579-1589.e2. https://doi.org/10.1053/j.gastro.2016.02.026.

    Article  CAS  Google Scholar 

  46. •• Arora V, Maiwall R, Rajan V. Terlipressin is superior to noradrenaline in the management of acute kidney injury in acute on chronic liver failure. Hepatology. 2020;71:600–10. This is only well designed study showing performance of terlipressin is better than noradrenaline in patients with ACLF.

    Article  CAS  PubMed  Google Scholar 

  47. Alessandria C, Ottobrelli A, Debernardi-Venon W, et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol. 2007;47(4):499–505. https://doi.org/10.1016/j.jhep.2007.04.010.

    Article  CAS  PubMed  Google Scholar 

  48. Singh V, Ghosh S, Singh B, et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol. 2012;56(6):1293–8. https://doi.org/10.1016/j.jhep.2012.01.012.

    Article  CAS  PubMed  Google Scholar 

  49. Italian Association for the Study of the Liver Study Group on Hepatorenal Syndrome, Cavallin M, Kamath PS, Merli M, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology. 2015;62(2):567–74. https://doi.org/10.1002/hep.27709.

    Article  CAS  Google Scholar 

  50. Esrailian E, Pantangco ER, Kyulo NL, et al. Octreotide/Midodrine therapy significantly improves renal function and 30-day survival in patients with type 1 hepatorenal syndrome. Dig Dis Sci. 2007;52(3):742–8. https://doi.org/10.1007/s10620-006-9312-0.

    Article  CAS  PubMed  Google Scholar 

  51. Solanki P, Chawla A, Garg R, Gupta R, Jain M, Sarin SK. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. J Gastroenterol Hepatol. 2003;18(2):152–6. https://doi.org/10.1046/j.1440-1746.2003.02934.x.

    Article  CAS  PubMed  Google Scholar 

  52. Terlipressin Study Group, Sanyal AJ, Boyer T, Garcia-Tsao G, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134(5):1360–8. https://doi.org/10.1053/j.gastro.2008.02.014.

    Article  CAS  Google Scholar 

  53. ANSWER Study Investigators, Caraceni P, Riggio O, Angeli P, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet. 2018;391(10138):2417–29. https://doi.org/10.1016/S0140-6736(18)30840-7.

    Article  Google Scholar 

  54. CONFIRM Study Investigators, Wong F, Pappas SC, Curry MP, et al. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. N Engl J Med. 2021;384(9):818–28. https://doi.org/10.1056/NEJMoa2008290.

    Article  Google Scholar 

  55. ATTIRE Trial Investigators, China L, Freemantle N, Forrest E, et al. A randomized trial of albumin Infusions in hospitalized patients with cirrhosis. N Engl J Med. 2021;384(9):808–17. https://doi.org/10.1056/NEJMoa2022166.

    Article  Google Scholar 

  56. Solà E, Solé C, Simón-Talero M, et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial. J Hepatol. 2018;69(6):1250–9. https://doi.org/10.1016/j.jhep.2018.08.006.

    Article  CAS  PubMed  Google Scholar 

  57. Lin WT, Lai CC, Chang SP, Wang JJ. Effects of early dialysis on the outcomes of critically ill patients with acute kidney injury: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019;9(1):18283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saraiva IE, Ortiz-Soriano VM, Mei X, et al. Continuous renal replacement therapy in critically ill patients with acute on chronic liver failure and acute kidney injury: a retrospective cohort study. Clin Nephrol. 2020;93(4):187–94. https://doi.org/10.5414/CN109983.

    Article  PubMed  Google Scholar 

  59. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9. https://doi.org/10.1001/jama.2016.5828.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang S, Suen SC, Gong CL, et al. Early transplantation maximizes survival in severe acute-on-chronic liver failure: results of a Markov decision process model. JHEP Rep. 2021;23(3):100367.

    Article  Google Scholar 

  61. Goussous N, Xie W, Zhang T, et al. Acute on chronic liver failure: factors associated with transplantation. Transplant Direct. 2021;7(12):e788.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sundaram V, Jalan R, Wu T, et al. Factors associated with survival of patients with severe acute-on-chronic liver failure before and after liver transplantation. Gastroenterology. 2019;156:1381-1391.e3.

    Article  PubMed  Google Scholar 

  63. Goosmann L, Buchholz A, Bangert K, et al. Liver transplantation for acute-on-chronic liver failure predicts post-transplant mortality and impaired long-term quality of life. Liver Int. 2021;41:574–84.

    Article  PubMed  Google Scholar 

  64. Singh SP, Jindal A. Association of rectal colonisation by MDROs with new infection in cirrhosis. J Hepatol. 2022;77(2):577–8. https://doi.org/10.1016/j.jhep.2022.03.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SPS formed the manuscript. TM helped in figures. RM critically revised the manuscript, provided input in tables and figures, commented on previous version of manuscript, and approved the final version.

Corresponding author

Correspondence to Rakhi Maiwall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Madke, T. & Maiwall, R. Acute Kidney Injury in Acute on Chronic Liver Failure Versus Decompensated Cirrhosis—What Is the Difference?. Curr Hepatology Rep 23, 294–305 (2024). https://doi.org/10.1007/s11901-024-00660-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-024-00660-9

Keywords

Navigation