Skip to main content

Advertisement

Log in

Pathogenesis of NASH: the Impact of Multiple Pathways

  • Fatty Liver Disease (Z Younossi, Section Editor)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Advancing our understanding of the mechanisms that underlie NASH pathogenesis.

Recent findings

Recent findings on NASH pathogenesis have expanded our understanding of its complexity including (1) there are multiple parallel hits that lead to NASH; (2) the microbiota play an important role in pathogenesis, with bacterial species recently shown to accurately differentiate between NAFL and NASH patients; (3) the main drivers of liver cell injury are lipotoxicity caused by free fatty acids (FFAs) and their derivatives combined with mitochondrial dysfunction; (4) decreased endoplasmic reticulum (ER) efficiency with increased demand for protein synthesis/folding/repair results in ER stress, protracted unfolded protein response, and apoptosis; (5) upregulated proteins involved in multiple pathways including JNK, CHOP, PERK, BH3-only proteins, and caspases result in mitochondrial dysfunction and apoptosis; and (6) subtypes of NASH in which these pathophysiological pathways vary may require patient subtype identification to choose effective therapy.

Summary

Recent pathogenesis studies may lead to important therapeutic advances, already seen in patients treated with ACC, ASK1 and SCD1 inhibitors, and FXR agonists. Further, advancing our understanding of mechanisms underlying NASH pathogenesis and the complex interplay between them will be crucial for developing effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84 Important updated study on the epidemiology of NAFLD.

    PubMed  Google Scholar 

  2. Day CP. Natural history of NAFLD: remarkably benign in the absence of cirrhosis. Gastroenterology. 2005;129:375–8.

    CAS  PubMed  Google Scholar 

  3. Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–73.

    CAS  PubMed  Google Scholar 

  4. Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59:969–74.

    PubMed  Google Scholar 

  5. •• Setiawan VW, Stram DO, Porcel J, et al. Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the multiethnic cohort. Hepatology. 2016;64:1969–77 First study to show NAFLD is the leading cause of cirrhosis in few multiethnic groups.

    PubMed  PubMed Central  Google Scholar 

  6. •• Noureddin M, Vipani A, Bresee C, et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol. 2018. https://doi.org/10.1038/s41395-018-0088-6. First study to show that NASH is the leading cause of liver transplant in women.

  7. Banini BA, Sanyal AJ. Nonalcoholic fatty liver disease: epidemiology, pathogenesis, natural history, diagnosis, and current treatment options. Clin Med Insights Ther. 2016;8:75–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. •• Mota M, Banini BA, Cazanave SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65:1049–61 Comperhensive review on lipotoxicity and glucotoxicity.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Caligiuri A, Gentilini A, Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17.

  10. Yu J, Marsh S, Hu J, et al. The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract. 2016;2016:2862173.

    PubMed  PubMed Central  Google Scholar 

  11. • BasuRay S, Smagris E, Cohen JC, et al. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66:1111–24 Update on the mechanism of PNPLA3 in NAFLD.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. • Bruschi FV, Claudel T, Tardelli M, et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology. 2017;65:1875–90 Update on the mechanism of PNPLA3 in NAFLD.

    CAS  PubMed  Google Scholar 

  13. • Musso G, Cassader M, Paschetta E, et al. TM6SF2 may drive postprandial lipoprotein cholesterol toxicity away from the vessel walls to the liver in NAFLD. J Hepatol. 2016;64:979–81 Update on the mechanism of TM6SF2 in NAFLD.

    CAS  PubMed  Google Scholar 

  14. Chalasani N, Guo X, Loomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology. 2010;139:1567–76 1576 e1561–1566.

    PubMed  PubMed Central  Google Scholar 

  15. Di Filippo M, Moulin P, Roy P, et al. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J Hepatol. 2014;61:891–902.

    PubMed  Google Scholar 

  16. Petta S, Valenti L, Tuttolomondo A, et al. Interferon lambda 4 rs368234815 TT>deltaG variant is associated with liver damage in patients with nonalcoholic fatty liver disease. Hepatology. 2017;66:1885–93.

    CAS  PubMed  Google Scholar 

  17. Santoro N, Zhang CK, Zhao H, et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology. 2012;55:781–9.

    CAS  PubMed  Google Scholar 

  18. Valenti L, Motta BM, Alisi A, et al. LPIN1 rs13412852 polymorphism in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2012;54:588–93.

    CAS  PubMed  Google Scholar 

  19. Abul-Husn NS, Cheng X, Li AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med. 2018;378:1096–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun C, Fan JG, Qiao L. Potential epigenetic mechanism in non-alcoholic fatty liver disease. Int J Mol Sci. 2015;16:5161–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy SK, Yang H, Moylan CA, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med (Maywood). 2015;240:809–20.

    CAS  Google Scholar 

  23. Szabo G, Csak T. Role of microRNAs in NAFLD/NASH. Dig Dis Sci. 2016;61:1314–24.

    CAS  PubMed  Google Scholar 

  24. Tran M, Lee SM, Shin DJ, et al. Loss of miR-141/200c ameliorates hepatic steatosis and inflammation by reprogramming multiple signaling pathways in NASH. JCI Insight. 2017;2. https://doi.org/10.1172/jci.insight.96094.

  25. • Loyer X, Paradis V, Henique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARalpha expression. Gut. 2016;65:1882–94 A study on the role of miRNA in NAFLD.

    CAS  PubMed  Google Scholar 

  26. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68:1063–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52:165–74.

    CAS  PubMed  Google Scholar 

  28. Enjoji M, Yasutake K, Kohjima M, et al. Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol. Int J Hepatol. 2012;2012:925807.

    PubMed  PubMed Central  Google Scholar 

  29. Aigner E, Strasser M, Haufe H, et al. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am J Gastroenterol. 2010;105:1978–85.

    CAS  PubMed  Google Scholar 

  30. Tallino S, Duffy M, Ralle M, et al. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem. 2015;26:996–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nelson JE, Klintworth H, Kowdley KV. Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep. 2012;14:8–16.

    PubMed  Google Scholar 

  32. • Zelber-Sagi S, Ivancovsky-Wajcman D, Fliss Isakov N, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68:1239–46 Update on diet association with NAFLD.

    CAS  PubMed  Google Scholar 

  33. Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59:928–32.

    CAS  PubMed  Google Scholar 

  34. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 2001;34:288–97.

    CAS  PubMed  Google Scholar 

  35. Polyzos SA, Aronis KN, Kountouras J, et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016;59:30–43.

    CAS  PubMed  Google Scholar 

  36. Polyzos SA, Kountouras J, Mantzoros CS, et al. Effects of combined low-dose spironolactone plus vitamin E vs vitamin E monotherapy on insulin resistance, non-invasive indices of steatosis and fibrosis, and adipokine levels in non-alcoholic fatty liver disease: a randomized controlled trial. Diabetes Obes Metab. 2017;19:1805–9.

    CAS  PubMed  Google Scholar 

  37. Kamran F, Rother KI, Cochran E, et al. Consequences of stopping and restarting leptin in an adolescent with lipodystrophy. Horm Res Paediatr. 2012;78:320–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.

    CAS  PubMed  Google Scholar 

  39. Park JY, Chong AY, Cochran EK, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J Clin Endocrinol Metab. 2008;93:26–31.

    CAS  PubMed  Google Scholar 

  40. Safar Zadeh E, Lungu AO, Cochran EK, et al. The liver diseases of lipodystrophy: the long-term effect of leptin treatment. J Hepatol. 2013;59:131–7.

    CAS  PubMed  Google Scholar 

  41. Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne). 2011;2:62.

    CAS  Google Scholar 

  42. Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23:435–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Otani H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal. 2011;15:1911–26.

    CAS  PubMed  Google Scholar 

  44. Polyzos SA, Kountouras J, Zavos C. Nonlinear distribution of adiponectin in patients with nonalcoholic fatty liver disease limits its use in linear regression analysis. J Clin Gastroenterol. 2010;44:229–30 author reply 230-221.

    PubMed  Google Scholar 

  45. van der Poorten D, Samer CF, Ramezani-Moghadam M, et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause? Hepatology. 2013;57:2180–8.

    PubMed  Google Scholar 

  46. Joshi-Barve S, Kirpich I, Cave MC, et al. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Mol Gastroenterol Hepatol. 2015;1:356–67.

    PubMed  PubMed Central  Google Scholar 

  47. Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Farhadi A, Gundlapalli S, Shaikh M, et al. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int. 2008;28:1026–33.

    PubMed  PubMed Central  Google Scholar 

  49. Schneider KM, Bieghs V, Heymann F, et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology. 2015;62:1405–16.

    CAS  PubMed  Google Scholar 

  50. Bashiardes S, Shapiro H, Rozin S, et al. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016;5:782–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–1062 e1055 Study on the role of gut microbiome in NAFLD and assication with severity of the disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–7.

    CAS  PubMed  Google Scholar 

  53. Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–9.

    CAS  PubMed  Google Scholar 

  54. Wong VW, Wong GL, Chan HY, et al. Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: a prospective cohort study. Aliment Pharmacol Ther. 2015;42:731–40.

    CAS  PubMed  Google Scholar 

  55. Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 2017;37 Suppl 1:97–103.

    PubMed  Google Scholar 

  56. Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66:180–90.

    CAS  PubMed  Google Scholar 

  57. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–90.

    CAS  PubMed  Google Scholar 

  58. Arguello G, Balboa E, Arrese M, et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852:1765–78.

    CAS  PubMed  Google Scholar 

  59. Ferreira DM, Afonso MB, Rodrigues PM, et al. c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol. 2014;34:1100–20.

    PubMed  PubMed Central  Google Scholar 

  60. Lim JS, Mietus-Snyder M, Valente A, et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–64.

    CAS  PubMed  Google Scholar 

  61. Kunde SS, Roede JR, Vos MB, et al. Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Nutrients. 2011;3:987–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pooranaperundevi M, Sumiyabanu MS, Viswanathan P, et al. Insulin resistance induced by high-fructose diet potentiates carbon tetrachloride hepatotoxicity. Toxicol Ind Health. 2010;26:89–104.

    CAS  PubMed  Google Scholar 

  63. Sivaraman K, Senthilkumar GP, Sankar P, et al. Attenuation of oxidative stress, inflammation and insulin resistance by allium sativum in fructose-fed male rats. J Clin Diagn Res. 2013;7:1860–2.

    CAS  Google Scholar 

  64. Wei Y, Pagliassotti MJ. Hepatospecific effects of fructose on c-Jun NH2-terminal kinase: implications for hepatic insulin resistance. Am J Physiol Endocrinol Metab. 2004;287:E926–33.

    CAS  PubMed  Google Scholar 

  65. Iruarrizaga-Lejarreta M, Varela-Rey M, Fernandez-Ramos D, et al. Role of Aramchol in steatohepatitis and fibrosis in mice. Hepatol Commun. 2017;1:911–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lawitz EJ, Coste A, Poordad F, et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.cgh.2018.04.042.

  67. Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–46.

    CAS  PubMed  Google Scholar 

  68. Fromenty B, Robin MA, Igoudjil A, et al. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab. 2004;30:121–38.

    CAS  PubMed  Google Scholar 

  69. Gariani K, Menzies KJ, Ryu D, et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology. 2016;63:1190–204.

    CAS  PubMed  Google Scholar 

  70. Penke M, Larsen PS, Schuster S, et al. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet. Mol Cell Endocrinol. 2015;412:65–72.

    CAS  PubMed  Google Scholar 

  71. Emery MG, Fisher JM, Chien JY, et al. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology. 2003;38:428–35.

    CAS  PubMed  Google Scholar 

  72. Weltman MD, Farrell GC, Hall P, et al. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology. 1998;27:128–33.

    CAS  PubMed  Google Scholar 

  73. • Win S, Than TA, Le BH, et al. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J Hepatol. 2015;62:1367–74 New study that gives insight into the JNK-mitochodria pathway in NAFLD.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. McCommis KS, Hodges WT, Brunt EM, et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65:1543–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–94.

    CAS  PubMed  Google Scholar 

  76. Li Z, Berk M, McIntyre TM, et al. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47:1495–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73:79–94.

    CAS  PubMed  Google Scholar 

  78. Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A. 2013;110:4628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134:568–76.

    CAS  PubMed  Google Scholar 

  81. Lovering F, Morgan P, Allais C, et al. Rational approach to highly potent and selective apoptosis signal-regulating kinase 1 (ASK1) inhibitors. Eur J Med Chem. 2018;145:606–21.

    CAS  PubMed  Google Scholar 

  82. •• Loomba R, Lawitz E, Mantry PS, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology. 2017. https://doi.org/10.1002/hep.29514. Role of ASK1 inhibtors in humans with NASH.

  83. •• Wang PX, Ji YX, Zhang XJ, et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat Med. 2017;23:439–49 New study on new pathways in NASH.

    CAS  PubMed  Google Scholar 

  84. •• Zhang P, Wang PX, Zhao LP, et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med. 2018;24:84–94 New study on new pathways related to ASK1 in NASH.

    CAS  PubMed  Google Scholar 

  85. Kakisaka K, Cazanave SC, Fingas CD, et al. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver Physiol. 2012;302:G77–84.

    CAS  PubMed  Google Scholar 

  86. Zhang J, Singh N, Robinson-Taylor KS, et al. Hepatocyte autophagy is linked to C/EBP-homologous protein, Bcl2-interacting mediator of cell death, and BH3-interacting domain death agonist gene expression. J Surg Res. 2015;195:588–95.

    CAS  PubMed  Google Scholar 

  87. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–43.

    PubMed  Google Scholar 

  88. Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2015;1:17–27.

    PubMed  Google Scholar 

  89. Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349–64.

    CAS  PubMed  Google Scholar 

  90. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127:55–64.

    PubMed  PubMed Central  Google Scholar 

  91. Meli R, Mattace Raso G, Calignano A. Role of innate immune response in non-alcoholic fatty liver disease: metabolic complications and therapeutic tools. Front Immunol. 2014;5:177.

    PubMed  PubMed Central  Google Scholar 

  92. Miura K, Yang L, van Rooijen N, et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rahman K, Desai C, Iyer SS, et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733–746 e712.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jia L, Vianna CR, Fukuda M, et al. Hepatocyte toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5:3878.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Okin D, Medzhitov R. The effect of sustained inflammation on hepatic mevalonate pathway results in hyperglycemia. Cell. 2016;165:343–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Spruss A, Kanuri G, Wagnerberger S, et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology. 2009;50:1094–104.

    CAS  PubMed  Google Scholar 

  97. Palsson-McDermott EM, Doyle SL, McGettrick AF, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10:579–86.

    CAS  PubMed  Google Scholar 

  98. Wang Y, Chen T, Han C, et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 2007;110:962–71.

    CAS  PubMed  Google Scholar 

  99. Zhang N, Liang H, Farese RV, et al. Pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. PLoS One. 2015;10:e0132575.

    PubMed  PubMed Central  Google Scholar 

  100. •• Zhao GN, Zhang P, Gong J, et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat Med. 2017;23:742–52 A study exploring new pathways in NASH related to TLR4.

    CAS  PubMed  Google Scholar 

  101. Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66:1037–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol. 2018;53:264–78.

    CAS  PubMed  Google Scholar 

  103. Syn WK, Oo YH, Pereira TA, et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51:1998–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Guy CD, Suzuki A, Zdanowicz M, et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology. 2012;55:1711–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Guy CD, Suzuki A, Abdelmalek MF, et al. Treatment response in the PIVENS trial is associated with decreased Hedgehog pathway activity. Hepatology. 2015;61:98–107.

    CAS  PubMed  Google Scholar 

  106. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

    CAS  PubMed  Google Scholar 

  107. Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157:255–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fuchs CD, Traussnigg SA, Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. Semin Liver Dis. 2016;36:69–86.

    CAS  PubMed  Google Scholar 

  109. Francque S, Verrijken A, Caron S, et al. PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63:164–73.

    CAS  PubMed  Google Scholar 

  110. Shan W, Nicol CJ, Ito S, et al. Peroxisome proliferator-activated receptor-beta/delta protects against chemically induced liver toxicity in mice. Hepatology. 2008;47:225–35.

    CAS  PubMed  Google Scholar 

  111. • Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–1159 e1145 Role of peroxisome proliferator-activated receptor-alpha and -delta in humans with NASH.

    CAS  PubMed  Google Scholar 

  112. Kunne C, Acco A, Duijst S, et al. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model. Biochim Biophys Acta. 2014;1842:739–46.

    CAS  PubMed  Google Scholar 

  113. Cipriani S, Mencarelli A, Palladino G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51:771–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma Y, Huang Y, Yan L, et al. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 2013;30:1447–57.

    PubMed  PubMed Central  Google Scholar 

  115. •• Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65 Role of FXR agnosits in humans with NASH.

    CAS  PubMed  Google Scholar 

  116. Degirolamo C, Modica S, Vacca M, et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology. 2015;61:161–70.

    CAS  PubMed  Google Scholar 

  117. Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.

    CAS  PubMed  Google Scholar 

  118. Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–7.

    CAS  PubMed  Google Scholar 

  119. Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    CAS  PubMed  Google Scholar 

  121. Bansal R, van Baarlen J, Storm G, et al. The interplay of the notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis. Sci Rep. 2015;5:18272.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Borthwick LA, Mann DA. Liver: Osteopontin and HMGB1: novel regulators of HSC activation. Nat Rev Gastroenterol Hepatol. 2016;13:320–2.

    CAS  PubMed  Google Scholar 

  123. Schnabl B, Bradham CA, Bennett BL, et al. TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology. 2001;34:953–63.

    CAS  PubMed  Google Scholar 

  124. •• Alonso C, Fernandez-Ramos D, Varela-Rey M, et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology. 2017;152:1449–1461 e1447 A study exploring the NASH-subtypes in humans.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun J. Sanyal.

Ethics declarations

Conflicts of Interest

Arun J. Sanyal reports grants and other from Gilead, grants from Intercept, grants and other from Novartis, grants from Merck, grants and other from BMS, grants from Tobira, grants from Echosense, other from Sanyal Bio, other from Genfit, other from Tiziana, other from Galectin, other from Nitto Denko, other from Nimbus, other from Aredlyx, other from Vivelyx, other from Teva, other from Canfite, other from Boehringer Ingelheim, other from Pfizer, other from Salix, other from Enyo, other from uptodate, other from Natural Shield, other from Durect, other from Exhalenz, other from Hemoshear, and other from Akarna, outside the submitted work. Mazen Noureddin has been on the advisory board or a speaker for EchoSens North America, OWL, Gilead, Intercept, Novartis and Allergan. He has been a speaker for: Simply Speaking, Echosens, Alexion and Abbott. He has received research support from: Allergan, Gilead, Galmed, Galectin, Genfit, Conatus, Intercept, Enanta, Zydus, and Shire; Mazen Noureddin is a minor shareholder of Anaetos.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Fatty Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noureddin, M., Sanyal, A.J. Pathogenesis of NASH: the Impact of Multiple Pathways. Curr Hepatology Rep 17, 350–360 (2018). https://doi.org/10.1007/s11901-018-0425-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-018-0425-7

Keywords

Navigation