Skip to main content

Advertisement

Log in

Pathogenesis and natural course of hepatic steatosis and insulin resistance in patients with hepatitis C

  • Published:
Current Hepatitis Reports Aims and scope Submit manuscript

Abstract

Steatosis is a common histologic feature in chronic hepatitis C virus (HCV) infection. Viral steatosis, seen in genotype 3a, is strongly related to viral replication; metabolic steatosis, reported in genotype 1, has been associated with obesity, type 2 diabetes, and metabolic syndrome. HCV promotes lipid accumulation in hepatocytes, increasing free fatty acid synthesis and decreasing lipid oxidation and secretion. Several amino acid changes in core protein have been strongly related to steatosis development; for example, the Y164F change has been related to greater cumulative lipid droplets. Steatosis-induced HCV seems to act as an organelle supporting stable viral replication. HCV proteins promote insulin receptor substrate-1 (IRS-1) degradation by several mechanisms, including oxidative stress, peroxisome proliferator-activated receptor (PPAR) downregulation, and enhancement of tumor necrosis factor production in a genotype-dependent manner. In genotype 1, IRS-1 degradation was induced by mammalian target of rapamycin and in genotype 3, by suppressor of cytokine signaling-7 and PPAR. Steatosis and insulin resistance have been associated with fibrosis progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bedossa P, Moucari R, Chelbi E, et al.: Evidence for a role of nonalcoholic steatohepatitis in hepatitis C: a prospective study. Hepatology 2007, 46:380–387.

    Article  PubMed  CAS  Google Scholar 

  2. Chang ML, Chen JC, Yeh CT, et al.: Topological and evolutional relationships between HCV core protein and hepatic lipid vesicles: studies in vitro and in conditionally transgenic mice. World J Gastroenterol 2007, 13:3472–3477.

    PubMed  CAS  Google Scholar 

  3. Moucari R, Asselah T, Cazals-Hatem D, et al.: Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology 2008, 134:416–423.

    Article  PubMed  CAS  Google Scholar 

  4. Mirandola S, Realdon S, Iqbal J, et al.: Liver microsomal triglyceride transfer protein is involved in hepatitis C liver steatosis. Gastroenterology 2006, 130:1661–1669.

    Article  PubMed  CAS  Google Scholar 

  5. Kim KH, Hong SP, Kim K, et al.: HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 2007, 355:883–888.

    Article  PubMed  CAS  Google Scholar 

  6. Reddy KR, Govindarajan S, Marcellin P, et al.: Hepatic steatosis in chronic hepatitis C: baseline host and viral characteristics and influence on response to therapy with peginterferon alpha-2a plus ribavirin. J Viral Hepat 2008, 15:129–136.

    PubMed  CAS  Google Scholar 

  7. Jhaveri R, McHutchison J, Patel K, et al.: Specific polymorphisms in HCV genotype 3 core protein associated with intracellular lipid accumulation. J Infect Dis 2008, 197:283–291.

    Article  PubMed  CAS  Google Scholar 

  8. Hourioux C, Patient R, Morin A, et al.: The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut 2007, 56:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  9. Clément S, Negro F: Hepatitis C virus: the viral way to fatty liver. J Hepatol 2007, 46:985–987.

    Article  PubMed  Google Scholar 

  10. Hézode C, Zafrani ES, Roudot-Thoraval F, et al.: Daily cannabis use: a novel risk factor of steatosis severity in patients with chronic hepatitis C. Gastroenterology 2008, 134:432–439.

    Article  PubMed  Google Scholar 

  11. Mitsuyoshi H, Itoh Y, Sumida Y, et al.: Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 2008, 38:348–353.

    Article  PubMed  CAS  Google Scholar 

  12. Romero-Gómez M, Castellano-Megias VM, Grande L, et al.: Serum leptin levels correlate with hepatic steatosis in chronic hepatitis C. Am J Gastroenterol 2003, 98:1135–1141.

    PubMed  Google Scholar 

  13. Boulant S, Targett-Adams P, McLauchlan J: Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 2007, 88:2204–2213.

    Article  PubMed  CAS  Google Scholar 

  14. Shavinskaya A, Boulant S, Penin F, et al.: The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 2007, 282:37158–37169.

    Article  PubMed  CAS  Google Scholar 

  15. Narita R, Abe S, Kihara Y, et al.: Insulin resistance and insulin secretion in chronic hepatitis C virus infection. J Hepatol 2004, 41:132–138.

    Article  PubMed  CAS  Google Scholar 

  16. Lecube A, Hernández C, Genescà J, Simó R: Proinflammatory cytokines, insulin resistance, and insulin secretion in chronic hepatitis C patients: a case-control study. Diabetes Care 2006, 29:1096–1101.

    Article  PubMed  CAS  Google Scholar 

  17. Yoneda M, Saito S, Ikeda T, et al.: Hepatitis C virus directly associates with insulin resistance independent of the visceral fat area in nonobese and nondiabetic patients. J Viral Hepat 2007, 14:600–607.

    Article  PubMed  CAS  Google Scholar 

  18. Zein CO, Levy C, Basu A, Zein NN: Chronic hepatitis C and type II diabetes mellitus: a prospective cross-sectional study. Am J Gastroenterol 2005, 100:48–55.

    Article  PubMed  Google Scholar 

  19. Romero-Gomez M: Insulin resistance and hepatitis C. World J Gastroenterol 2006, 12:7075–7080.

    PubMed  CAS  Google Scholar 

  20. Banerjee S, Saito K, Ait-Goughoulte M, et al.: Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance. J Virol 2008, 82:2606–2612.

    Article  PubMed  CAS  Google Scholar 

  21. Shintani Y, Fujie H, Miyoshi H, et al.: Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004, 126:840–848.

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki T, Aizaki H, Murakami K, et al.: Molecular biology of hepatitis C virus. J Gastroenterol 2007, 42:411–423.

    Article  PubMed  CAS  Google Scholar 

  23. Korenaga M, Wang T, Li Y, et al.: Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 2005, 280:37481–37488.

    Article  PubMed  CAS  Google Scholar 

  24. Hourioux C, Ait-Goughoulte M, Patient R, et al.: Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane. Cell Microbiol 2007, 9:1014–1027.

    Article  PubMed  CAS  Google Scholar 

  25. Nakatani Y, Kaneto H, Kawamori D, et al.: Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005, 280:847–851.

    PubMed  CAS  Google Scholar 

  26. de Gottardi A, Pazienza V, Pugnale P, et al.: Peroxisome proliferator-activated receptor-alpha and-gamma mRNA levels are reduced in chronic hepatitis C with steatosis and genotype 3 infection. Aliment Pharmacol Ther 2006, 23:107–114.

    Article  PubMed  CAS  Google Scholar 

  27. Im SS, Kwon SK, Kim TH, et al.: Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes. IUBMB Life 2007, 59:134–145.

    Article  PubMed  CAS  Google Scholar 

  28. Thorén F, Romero A, Lindh M, et al.: A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals. J Leukoc Biol 2004, 76:1180–1186.

    Article  PubMed  CAS  Google Scholar 

  29. Choi SH, Park KJ, Ahn BY, et al.: Hepatitis C virus non-structural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IkappaB kinase. Mol Cell Biol 2006, 26:3048–3059.

    Article  PubMed  CAS  Google Scholar 

  30. Pazienza V, Clément S, Pugnale P, et al.: The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology 2007, 45:1164–1171.

    Article  PubMed  CAS  Google Scholar 

  31. Banks AS, Li J, McKeag L, et al.: Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest 2005, 115:2462–2471.

    Article  PubMed  CAS  Google Scholar 

  32. Persico M, Capasso M, Persico E, et al.: Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: insulin resistance and response to antiviral therapy. Hepatology 2007, 46:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  33. Kawaguchi T, Yoshida T, Harada M, et al.: Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol 2004, 165:1499–1508.

    PubMed  CAS  Google Scholar 

  34. Romero-Gómez M, Del Mar Viloria M, Andrade RJ, et al.: Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005, 128:636–641.

    Article  PubMed  CAS  Google Scholar 

  35. Leandro G, Mangia A, Hui J, et al.: HCV Meta-Analysis (on) Individual Patients’ Data Study Group: Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 2006, 130:1636–1642.

    Article  PubMed  Google Scholar 

  36. Fartoux L, Chazouilleres O, Wendum D, et al.: Impact of steatosis on progression of fibrosis in patients with mild hepatitis C. Hepatology 2005, 41:82–87.

    Article  PubMed  Google Scholar 

  37. Waris G, Felmlee DJ, Negro F, Siddiqui A: Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 2007, 81:8122–8130.

    Article  PubMed  CAS  Google Scholar 

  38. Gabriel A, Ziólkowski A, Radlowski P, et al.: Hepatocyte steatosis in HCV patients promotes fibrosis by enhancing TGF-beta liver expression. Hepatol Res 2008, 38:141–146.

    PubMed  Google Scholar 

  39. Vidali M, Tripodi MF, Ivaldi A, et al.: Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J Hepatol 2008, 48:399–406.

    Article  PubMed  CAS  Google Scholar 

  40. Narita R, Abe S, Tabaru A, Otsuki M: Impact of steatosis on insulin secretion in chronic hepatitis C patients. Am J Gastroenterol 2007, 102:2173–2180.

    Article  PubMed  CAS  Google Scholar 

  41. Lo Iacono O, Venezia G, Petta S, et al.: The impact of insulin resistance, serum adipocytokines and visceral obesity on steatosis and fibrosis in patients with chronic hepatitis C. Aliment Pharmacol Ther 2007, 25:1181–1191.

    Article  PubMed  CAS  Google Scholar 

  42. Serfaty L, Poujol-Robert A, Carbonell N, et al.: Effect of the interaction between steatosis and alcohol intake on liver fibrosis progression in chronic hepatitis C. Am J Gastroenterol 2002, 97:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  43. Vidali M, Occhino G, Ivaldi A, et al.: Combination of oxidative stress and steatosis is a risk factor for fibrosis in alcohol-drinking patients with chronic hepatitis C. Am J Gastroenterol 2008, 103:147–153.

    PubMed  CAS  Google Scholar 

  44. Bugianesi E, Marchesini G, Gentilcore E, et al.: Fibrosis in genotype 3 chronic hepatitis C and nonalcoholic fatty liver disease: role of insulin resistance and hepatic steatosis. Hepatology 2006, 44:1648–1655.

    Article  PubMed  CAS  Google Scholar 

  45. Romero-Gómez M, Fernández-Rodríguez CM, Andrade RJ, et al.: Effect of sustained virological response to treatment on the incidence of abnormal glucose values in chronic hepatitis C. J Hepatol 2008, 48:721–727.

    Article  PubMed  CAS  Google Scholar 

  46. Pekow JR, Bhan AK, Zheng H, Chung RT: Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 2007, 109:2490–2496.

    Article  PubMed  Google Scholar 

  47. Tanaka A, Uegaki S, Kurihara H, et al.: Hepatic steatosis as a possible risk factor for the development of hepatocellular carcinoma after eradication of hepatitis C virus with antiviral therapy in patients with chronic hepatitis C. World J Gastroenterol 2007, 13:5180–5187.

    PubMed  CAS  Google Scholar 

  48. McGovern BH, Ditelberg JS, Taylor LE, et al.: Hepatic steatosis is associated with fibrosis, nucleoside analogue use, and hepatitis C virus genotype 3 infection in HIV-seropositive patients. Clin Infect Dis 2006, 43:365–372.

    Article  PubMed  CAS  Google Scholar 

  49. Gaslightwala I, Bini EJ: Impact of human immunodeficiency virus infection on the prevalence and severity of steatosis in patients with chronic hepatitis C virus infection. J Hepatol 2006, 44:1026–1032.

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez-Torres M, Govindarajan S, Sola R, et al.: Hepatic steatosis in HCV/HIV co-infected patients: correlates, efficacy and outcomes of anti-HCV therapy: A paired liver biopsy study. J Hepatol 2008, 48:756–764.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Romero-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-Gómez, M. Pathogenesis and natural course of hepatic steatosis and insulin resistance in patients with hepatitis C. Curr hepatitis rep 7, 113–119 (2008). https://doi.org/10.1007/s11901-008-0024-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-008-0024-0

Keywords

Navigation