Skip to main content

Advertisement

Log in

New Methodologies in the Molecular Monitoring of CML

  • Chronic Myeloid Leukemias (J Pinilla-Ibarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

In chronic myeloid leukemia (CML), the BCR-ABL fusion gene is both the therapeutic target of tyrosine kinase inhibitors and the indisputable direct marker of disease burden. Thus, sensitive assays for BCR-ABL now drive therapeutic options and are good surrogates for short- and long-term outcomes. Because CML is such an ideal model, new methods are arising that should make testing in CML faster, more reliable, and reach a greater sensitivity. These methods should be able to be transferred to other hematological malignancies that have mutation markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. JPR apologizes for the popular culture reference. To those non-sci-fi geeks, “Voyager” was the third installment of the Star Trek series, after “Star Trek,” and “Star Trek Next Generation.” DE and CCSY wash their hands of this footnote.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Druker BJ et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  2. Hochhaus A et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23(6):1054–61.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes TP et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014;123(9):1353–60. This reference shows the use of frontline nilotinib or imatinib in CML patients can increase early molecular response rates. Furthermore this study showed that patients who failed to achieve EMR have poorer outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jabbour E et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2014;123(4):494–500. This study showed that Dasatinib improved responses in treatment naïve CML patients when compared to imatinib with 3 year follow-up.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kantarjian H et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70.

    Article  CAS  PubMed  Google Scholar 

  6. Radich JP et al. A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood. 2012;120(19):3898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saglio G et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hughes TP et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  9. Ross DM et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. Ross, Branford, Mahon, and Takahashi are some of the early trials which attempted to withdraw treatment with TKI and utilizing close molecular monitoring to ensure sustained undetectable minimal residual disease.

    Article  CAS  PubMed  Google Scholar 

  10. Branford S et al. Early molecular response and female sex strongly predict stable undetectable BCR-ABL1, the criteria for imatinib discontinuation in patients with CML. Blood. 2013;121(19):3818–24. Ross, Branford, Mahon, and Takahashi are some of the early trials which attempted to withdraw treatment with TKI and utilizing close molecular monitoring to ensure sustained undetectable minimal residual disease.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi N et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012;97(6):903–6. Ross, Branford, Mahon, and Takahashi are some of the early trials which attempted to withdraw treatment with TKI and utilizing close molecular monitoring to ensure sustained undetectable minimal residual disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baccarani M et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. This paper outlines the concensus management guidelines for CML patients in European LeukemiaNet. In this version, particular updates on uses of TKI was reviewed.

    Article  CAS  PubMed  Google Scholar 

  13. NCCN. Clinical Practice Guidelines in Oncology. Chronic Myelogenous Leukemia. 2016. This is the clinical practive guidelines for CML issued by NCCN.

    Google Scholar 

  14. Reddy EP, Aggarwal AK. The ins and outs of bcr-abl inhibition. Genes Cancer. 2012;3(5-6):447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jabbour E et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20(10):1767–73.

    Article  CAS  PubMed  Google Scholar 

  16. Lahaye T et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer. 2005;103(8):1659–69.

    Article  PubMed  Google Scholar 

  17. Milojkovic D et al. Responses to second-line tyrosine kinase inhibitors are durable: an intention-to-treat analysis in chronic myeloid leukemia patients. Blood. 2012;119(8):1838–43.

    Article  CAS  PubMed  Google Scholar 

  18. Cortes JE et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    Article  CAS  PubMed  Google Scholar 

  19. Khoury HJ et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–12.

    Article  CAS  PubMed  Google Scholar 

  20. Radich JP et al. HLA-matched related hematopoietic cell transplantation for chronic-phase CML using a targeted busulfan and cyclophosphamide preparative regimen. Blood. 2003;102(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  21. Mahon FX et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. Ross, Branford, Mahon, and Takahashi are some of the early trials which attempted to withdraw treatment with TKI and utilizing close molecular monitoring to ensure sustained undetectable minimal residual disease.

    Article  CAS  PubMed  Google Scholar 

  22. Quintas-Cardama A, Cortes JE. Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc. 2006;81(7):973–88.

    Article  CAS  PubMed  Google Scholar 

  23. Verma D et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009;114(11):2232–5.

    Article  CAS  PubMed  Google Scholar 

  24. Swansbury J. Introduction. Cancer cytogenetics: methods and protocols. Methods Mol Biol. 2003;220:1–8.

    PubMed  Google Scholar 

  25. Luu MH, Press RD. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring. Expert Rev Mol Diagn. 2013;13(7):749–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kantarjian HM et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood. 2002;99(10):3547–53.

    Article  CAS  PubMed  Google Scholar 

  27. O’Brien SG et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.

    Article  PubMed  Google Scholar 

  28. Saglio G et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116(16):3852–61.

    Article  CAS  PubMed  Google Scholar 

  29. Sawyers CL et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99(10):3530–9.

    Article  CAS  PubMed  Google Scholar 

  30. Soverini S et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hughes T, Branford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev. 2006;20(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  32. Branford S et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood. 2004;104(9):2926–32.

    Article  CAS  PubMed  Google Scholar 

  33. Ibrahim AR et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011;117(14):3733–6.

    Article  CAS  PubMed  Google Scholar 

  34. Trivedi D et al. Adherence and persistence among chronic myeloid leukemia patients during second-line tyrosine kinase inhibitor treatment. J Manag Care Spec Pharm. 2014;20(10):1006–15.

    PubMed  Google Scholar 

  35. Goh HG et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma. 2011;52(5):896–904.

    Article  CAS  PubMed  Google Scholar 

  36. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  37. Zagaria A et al. BCR-ABL1 e6a2 transcript in chronic myeloid leukemia: biological features and molecular monitoring by droplet digital PCR. Virchows Arch. 2015;467(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  38. Jennings LJ et al. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 2014;16(2):174–9. This paper describes a method of testing for BCR-ABL by droplet digital PCR with improved the lower limit of detection and limit of quantification as compared to RT-QPCR. The study was done with pooled clinical samples and internaltional standards calibrators.

    Article  CAS  PubMed  Google Scholar 

  39. Bartley PA et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32(6 Pt 1):e222–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bartley PA et al. A DNA real-time quantitative PCR method suitable for routine monitoring of low levels of minimal residual disease in chronic myeloid leukemia. J Mol Diagn. 2015;17(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  41. Soverini S et al. Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain. Blood. 2013;122(9):1634–48.

    Article  CAS  PubMed  Google Scholar 

  42. Loman NJ et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9.

    Article  CAS  PubMed  Google Scholar 

  43. Meacham F et al. Identification and correction of systematic error in high-throughput sequence data. BMC Bioinformatics. 2011;12:451.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ismail F et al. The accuracy and timeliness of a Point Of Care lactate measurement in patients with Sepsis. Scand J Trauma Resusc Emerg Med. 2015;23(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Winn-Deen ES et al. Development of an integrated assay for detection of BCR-ABL RNA. Clin Chem. 2007;53(9):1593–600.

    Article  CAS  PubMed  Google Scholar 

  46. Juul S et al. Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing Plasmodium parasites based on enzyme activity measurement. ACS Nano. 2012;6(12):10676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitt MW et al. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109(36):14508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelani R, Monem F. Reconsideration of BCR-ABL protein flow cytometric immunobead assay: how potent to diagnose and monitor chronic myeloid leukemia? Int J Lab Hematol. 2015;37(5):723–8.

    Article  CAS  PubMed  Google Scholar 

  49. Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem. 2015;61(1):145–53.

    Article  PubMed  Google Scholar 

  50. Sheel Kumar V, Webster M. Extreme PCR: a breakthrough innovation for outbreaks? Clin Chem. 2015;61(4):674–6.

    Article  PubMed  Google Scholar 

  51. Stevens WS, Scott LE, Crowe SM. Quantifying HIV for monitoring antiretroviral therapy in resource-poor settings. J Infect Dis. 2010;201 Suppl 1:S16–26.

    Article  CAS  PubMed  Google Scholar 

  52. Petti CA et al. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006;42(3):377–82.

    Article  PubMed  Google Scholar 

  53. Sooknanan R et al. Detection and direct sequence identification of BCR-ABL mRNA in Ph + chronic myeloid leukemia. Exp Hematol. 1993;21(13):1719–24.

    CAS  PubMed  Google Scholar 

  54. Dugan LC et al. Detection of BCR-ABL Fusion mRNA Using Reverse Transcriptase Loop-mediated Isothermal Amplification. 2011. p. Medium: ED; Size: PDF-file: 27 pages; size: 2.4 Mbytes.

    Book  Google Scholar 

  55. Korlach J et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105(4):1176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eid J et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.

    Article  CAS  PubMed  Google Scholar 

  57. Mikheyev AS, Tin MM. A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour. 2014;14(6):1097–102.

    Article  CAS  PubMed  Google Scholar 

  58. Sharma A et al. Chitosan encapsulated quantum dots platform for leukemia detection. Biosens Bioelectron. 2012;38(1):107–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia C. S. Yeung.

Ethics declarations

Conflict of Interest

Cecilia C. S. Yeung reports grants from Gilead.

Daniel Egan declares no potential conflicts of interest.

Jerald Radich reports grants from Novartis and consulting for Ariad, Incyte, and BMS.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, C.C.S., Egan, D. & Radich, J. New Methodologies in the Molecular Monitoring of CML. Curr Hematol Malig Rep 11, 94–101 (2016). https://doi.org/10.1007/s11899-016-0303-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0303-8

Keywords

Navigation