Skip to main content
Log in

Is There a Role for Flow Cytometry in the Evaluation of Patients With Myelodysplastic Syndromes?

  • Myelodysplastic Syndromes (D Steensma, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

This review focuses on the most recent literature concerning flow cytometry (FCM) application for diagnosis of myelodysplastic syndrome (MDS). Aberrant FCM results have been defined as abnormalities in at least three tested features comprising at least two bone marrow (BM) cell compartments. FCM results should be interpreted together with the BM smear cytology, the morphological assessment of BM biopsy, and cytogenetic results. Including FCM in the pre-treatment assessment may provide not only diagnostic but also prognostic information. Further studies are needed to evaluate the role of FCM in individual risk assessment for MDS patients and in therapy choice and/or follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published most recently, have been highlighted as: • Of importance

  1. Bene MC. Immunophenotyping of myelodysplasia. Haematologica. 2003;88(4):363.

    PubMed  Google Scholar 

  2. Porwit A. Role of flow cytometry in diagnostics of myelodysplastic syndromes—beyond the WHO 2008 classification. Semin Diagn Pathol. 2011;28(4):273–82.

    Article  PubMed  Google Scholar 

  3. Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet working group. Leukemia. 2012;26(7):1730–41.

    Article  CAS  PubMed  Google Scholar 

  4. Elghetany MT. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2002;99(1):391–2.

    Article  CAS  PubMed  Google Scholar 

  5. van de Loosdrecht AA, Westers TM. Cutting edge: flow cytometry in myelodysplastic syndromes. J Natl Compr Canc Netw. 2013;11(7):892–902.

    PubMed  Google Scholar 

  6. Della Porta MG, Malcovati L, Invernizzi R, Travaglino E, Pascutto C, Maffioli M, et al. Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia. 2006;20(4):549–55.

    Article  CAS  PubMed  Google Scholar 

  7. Mathis S, Chapuis N, Debord C, Rouquette A, Radford-Weiss I, Park S, et al. Flow cytometric detection of dyserythropoiesis: a sensitive and powerful diagnostic tool for myelodysplastic syndromes. Leukemia. 2013;27(10):1981–7.

    Article  CAS  PubMed  Google Scholar 

  8. Xu F, Wu L, He Q, Zhang Z, Chang C, Li X. Immunophenotypic analysis of erythroid dysplasia and its diagnostic application in myelodysplastic syndromes. Intern Med J. 2012;42(4):401–11.

    Article  CAS  PubMed  Google Scholar 

  9. Ogata K, Kishikawa Y, Satoh C, Tamura H, Dan K, Hayashi A. Diagnostic application of flow cytometric characteristics of CD34+ cells in low-grade myelodysplastic syndromes. Blood. 2006;108(3):1037–44.

    Article  CAS  PubMed  Google Scholar 

  10. Westers TM, Alhan C, Chamuleau ME, van der Vorst MJ, Eeltink C, Ossenkoppele GJ, et al. Aberrant immunophenotype of blasts in myelodysplastic syndromes is a clinically relevant biomarker in predicting response to growth factor treatment. Blood. 2010;115(9):1779–84.

    Article  CAS  PubMed  Google Scholar 

  11. Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores J, et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia. 2008;22(6):1175–83.

    Article  CAS  PubMed  Google Scholar 

  12. Xu F, Guo J, Wu LY, He Q, Zhang Z, Chang CK, et al. Diagnostic application and clinical significance of FCM progress scoring system based on immunophenotyping in CD34+ blasts in myelodysplastic syndromes. Cytometry B Clin Cytom. 2013;84(4):267–78.

    Article  PubMed  Google Scholar 

  13. Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ, et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001;98(4):979–87.

    Article  CAS  PubMed  Google Scholar 

  14. Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102(1):394–403.

    Article  CAS  PubMed  Google Scholar 

  15. Stachurski D, Smith BR, Pozdnyakova O, Andersen M, Xiao Z, Raza A, et al. Flow cytometric analysis of myelomonocytic cells by a pattern recognition approach is sensitive and specific in diagnosing myelodysplastic syndrome and related marrow diseases: emphasis on a global evaluation and recognition of diagnostic pitfalls. Leuk Res. 2008;32(2):215–24.

    Article  PubMed  Google Scholar 

  16. Kussick SJ, Fromm JR, Rossini A, Li Y, Chang A, Norwood TH, et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol. 2005;124(2):170–81.

    Article  PubMed  Google Scholar 

  17. Kern W, Haferlach C, Schnittger S, Haferlach T. Clinical utility of multiparameter flow cytometry in the diagnosis of 1013 patients with suspected myelodysplastic syndrome: correlation to cytomorphology, cytogenetics, and clinical data. Cancer. 2010;116(19):4549–63.

    Article  PubMed  Google Scholar 

  18. van de Loosdrecht AA, Westers TM, Westra AH, Drager AM, van der Velden VH, Ossenkoppele GJ. Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood. 2008;111(3):1067–77.

    Article  PubMed  Google Scholar 

  19. Kern W, Haferlach C, Schnittger S, Alpermann T, Haferlach T. Serial assessment of suspected myelodysplastic syndromes: significance of flow cytometric findings validated by cytomorphology, cytogenetics, and molecular genetics. Haematologica. 2013;98(2):201–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Westers TM, van der Velden VH, Alhan C, Bekkema R, Bijkerk A, Brooimans RA, et al. Implementation of flow cytometry in the diagnostic work-up of myelodysplastic syndromes in a multicenter approach: report from the Dutch working party on flow cytometry in MDS. Leuk Res. 2012;36(4):422–30.

    Article  PubMed  Google Scholar 

  21. Chu SC, Wang TF, Li CC, Kao RH, Li DK, Su YC, et al. Flow cytometric scoring system as a diagnostic and prognostic tool in myelodysplastic syndromes. Leuk Res. 2011;35(7):868–73.

    Article  PubMed  Google Scholar 

  22. Xu F, Li X, Wu L, He Q, Zhang Z, Chang C. Flow cytometric scoring system (FCMSS) assisted diagnosis of myelodysplastic syndromes (MDS) and the biological significance of FCMSS-based immunophenotypes. Br J Haematol. 2010;149(4):587–97.

    Article  PubMed  Google Scholar 

  23. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van LP, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013 Sep 12.

  24. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bastie JN, Aucagne R, Droin N, Solary E, Delva L. Heterogeneity of molecular markers in chronic myelomonocytic leukemia: a disease associated with several gene alterations. Cell Mol Life Sci 2012 Mar 14.

  26. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Brunning R, Orazi A, Germing U, Le Beau M, Porwit A, Baumann I, et al. Myelodysplastic syndromes/neoplasms, overview. In: Swerdlow S, Campo E, Harris NL, Affe E, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissue. Lyon: WHI; 2008. p. 88–93.

    Google Scholar 

  29. van de Loosdrecht AA, Alhan C, Bene MC, Della Porta MG, Drager AM, Feuillard J, et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 2009 Aug;94(8):1124–34.

  30. van de Loosdrecht AA, Ireland R, Kern W, Della Porta MG, Alhan C, Balleisen JS, et al. Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an international consortium and the European LeukemiaNet working group. Leuk Lymphoma. 2013;54(3):472–5.

    Article  PubMed  Google Scholar 

  31. Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, del CC, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Porwit A, van de Loosdrecht AA, Bettelheim P, Brodersen LE, Burbury K, Cremers E, et al. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the international/European LeukemiaNet working group for flow cytometry in MDS. Leukemia. 2014;28:1793–8. Consensus guidelines on including flow cytometry in WHO classification of MDS are proposed.

    Article  CAS  PubMed  Google Scholar 

  33. Ogata K, Della Porta MG, Malcovati L, Picone C, Yokose N, Matsuda A, et al. Diagnostic utility of flow cytometry in low-grade myelodysplastic syndromes: a prospective validation study. Haematologica. 2009;94(8):1066–74.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Della Porta MG, Picone C, Pascutto C, Malcovati L, Tamura H, Handa H, et al. Multicenter validation of a reproducible flow cytometric score for the diagnosis of low-grade myelodysplastic syndromes: results of a European LeukemiaNET study. Haematologica. 2012;97(8):1209–17.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bardet V, Wagner-Ballon O, Guy J, Morvan C, Debord C, Trimoreau F, et al. Multicentric study underlining the interest of adding CD5, CD7 and CD56 expression assessment to the flow cytometric Ogata score in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100(4):472–8. Four parameter flow cytometry score (Ogata score) is validated and added value of CD5, CD7 and CD56 is investiagated.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Porwit A. Screening bone marrow samples for abnormal lymphoid populations and myelodysplasia-related features with one 10-color 14-antibody screening tube. Cytometry B Clin Cytom 2015. One 10-color, 14-antibody tube for screening of bone marrow samples for abnormal lymphoid populations and for Ogata score is proposed.

  37. Heron M, Dovern E, Bakker-Jonges LE, Posthuma EF, Brouwer RE, Smedts F, et al. Translating the MDS flow cytometric score into clinical practice. Cytometry B Clin Cytom 2014 Dec 10.

  38. Aalbers AM, van den de Heuvel-Eibrink MMHV, Te Marvelde JG, de Jong AX, Van der Burg M, Dworzak M et al. Applicability of a reproducible flow cytometry scoring system in the diagnosis of refractory cytopenia of childhood. Leukemia. 2013;27(9):1923–5.

    Article  CAS  PubMed  Google Scholar 

  39. Arnoulet C, Bene MC, Durrieu F, Feuillard J, Fossat C, Husson B, et al. Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL. Cytometry B Clin Cytom. 2010;78(1):4–10.

    PubMed  Google Scholar 

  40. van Lochem EG, van der Velden VH, Wind HK, Te Marvelde JG, Westerdaal NA, van Dongen JJ. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom. 2004;60(1):1–13.

    Article  PubMed  Google Scholar 

  41. Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores-Montero J, et al. Bone marrow cells from myelodysplastic syndromes show altered immunophenotypic profiles that may contribute to the diagnosis and prognostic stratification of the disease: a pilot study on a series of 56 patients. Cytometry B Clin Cytom. 2010;78(3):154–68.

    PubMed  Google Scholar 

  42. Maynadie M, Picard F, Husson B, Chatelain B, Cornet Y, Le RG, et al. Immunophenotypic clustering of myelodysplastic syndromes. Blood. 2002;100(7):2349–56.

    Article  CAS  PubMed  Google Scholar 

  43. Burbury KL, Westerman DA. Role of flow cytometry in myelodysplastic syndromes: diagnosis, classification, prognosis and response assessment. Leuk Lymphoma. 2014;55(4):749–60.

    Article  CAS  PubMed  Google Scholar 

  44. Aalbers AM, Van der Heuvel-Eibrink MM, Baumann I, Dworzak M, Hasle H, Locatelli F, et al. Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica. 2015;100(3):315–23. Value of FCM in diagnosis of refractory cytopenia of childhood is evaluated in an international study.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Veltroni M, Sainati L, Zecca M, Fenu S, Tridello G, Testi AM, et al. Advanced pediatric myelodysplastic syndromes: can immunophenotypic characterization of blast cells be a diagnostic and prognostic tool? Pediatr Blood Cancer. 2009;52(3):357–63.

    Article  PubMed  Google Scholar 

  46. Wangen JR, Eidenschink BL, Stolk TT, Wells DA, Loken MR. Assessment of normal erythropoiesis by flow cytometry: important considerations for specimen preparation. Int J Lab Hematol. 2014;36(2):184–96.

    Article  CAS  PubMed  Google Scholar 

  47. Eidenschink BL, Menssen AJ, Wangen JR, Stephenson CF, de Baca ME, Zehentner BK, et al. Assessment of erythroid dysplasia by “Difference from normal” in routine clinical flow cytometry workup. Cytometry B Clin Cytom. 2015;88(2):125–35. A detailed study of eythroid dysplasia using methodology described in ref. 47.

    Article  Google Scholar 

  48. Laranjeira P, Rodrigues R, Carvalheiro T, Constanco C, Vitoria H, Matarraz S, et al. Expression of CD44 and CD35 during normal and myelodysplastic erythropoiesis. Leuk Res. 2015;39(3):361–70. A novel method to study erythropoietic differentiation is described.

    Article  CAS  PubMed  Google Scholar 

  49. Valent P, Orazi A, Busche G, Schmitt-Graff A, George TI, Sotlar K, et al. Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget. 2010;1(7):483–96.

    PubMed Central  PubMed  Google Scholar 

  50. Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104(9):2722–7.

    Article  CAS  PubMed  Google Scholar 

  51. Filby A. “Mega” cytometry for a “mega” challenging cell type. Cytometry A. 2014;85(4):289–91.

    Article  PubMed  Google Scholar 

  52. Niswander LM, McGrath KE, Kennedy JC, Palis J. Improved quantitative analysis of primary bone marrow megakaryocytes utilizing imaging flow cytometry. Cytometry A. 2014;85(4):302–12.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sandes AF, Yamamoto M, Matarraz S, Chauffaille ML, Quijano S, Lopez A, et al. Altered immunophenotypic features of peripheral blood platelets in myelodysplastic syndromes. Haematologica. 2012;97(6):895–902.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Connor DE, Ma DD, Joseph JE. Flow cytometry demonstrates differences in platelet reactivity and microparticle formation in subjects with thrombocytopenia or thrombocytosis due to primary haematological disorders. Thromb Res. 2013;132(5):572–7.

    Article  CAS  PubMed  Google Scholar 

  55. Popov VM, Vladareanu AM, Bumbea H, Kovacs E, Savopol T, Iordache MM, et al. Hemorrhagic risk due to platelet dysfunction in myelodysplastic patients, correlations with anemia severity and iron overload. Blood Coagul Fibrinolysis 2015 Mar 24 online.

  56. Kerkhoff N, Bontkes HJ, Westers TM, de Gruijl TD, Kordasti S, van de Loosdrecht AA. Dendritic cells in myelodysplastic syndromes: from pathogenesis to immunotherapy. Immunotherapy. 2013;5(6):621–37.

    Article  CAS  PubMed  Google Scholar 

  57. Saft L, Bjorklund E, Berg E, Hellstrom-Lindberg E, Porwit A. Bone marrow dendritic cells are reduced in patients with high-risk myelodysplastic syndromes. Leuk Res. 2013;37(3):266–73.

    Article  CAS  PubMed  Google Scholar 

  58. Henry JY, Labarthe MC, Meyer B, Dasgupta P, Dalgleish AG, Galustian C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs® immunomodulatory compounds Lenalidomide and Pomalidomide. Immunology. 2013;139(3):377–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Frikeche J, Clavert A, Delaunay J, Brissot E, Gregoire M, Gaugler B, et al. Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol. 2011;39(11):1056–63.

    Article  CAS  PubMed  Google Scholar 

  60. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, et al. CD4 + CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110(3):847–50.

    Article  CAS  PubMed  Google Scholar 

  61. Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L, et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol. 2009;145(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  62. Kahn JD, Chamuleau ME, Westers TM, Van de Ven PM, van DL, van SM, et al. Regulatory T cells and progenitor B cells are independent prognostic predictors in lower risk Myelodysplastic Syndromes. Haematologica 2015 Mar 6 online.

  63. Mailloux AW, Sugimori C, Komrokji RS, Yang L, Maciejewski JP, Sekeres MA, et al. Expansion of effector memory regulatory T cells represents a novel prognostic factor in lower risk myelodysplastic syndrome. J Immunol. 2012;189(6):3198–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Fozza C, Longinotti M. The role of T-cells in the pathogenesis of myelodysplastic syndromes: passengers and drivers. Leuk Res. 2013;37(2):201–3.

    Article  CAS  PubMed  Google Scholar 

  65. Ogata K, Kakumoto K, Matsuda A, Tohyama K, Tamura H, Ueda Y, et al. Differences in blast immunophenotypes among disease types in myelodysplastic syndromes: a multicenter validation study. Leuk Res. 2012;36(10):1229–36.

    Article  CAS  PubMed  Google Scholar 

  66. Alhan C, Westers TM, Cremers EM, Cali C, Witte BI, Ossenkoppele GJ, et al. High flow cytometric scores identify adverse prognostic subgroups within the revised international prognostic scoring system for myelodysplastic syndromes. Br J Haematol. 2014;167(1):100–9. Prognostic value of FCM scores in MDS.

    Article  PubMed  Google Scholar 

  67. Kern W, Bacher U, Haferlach C, Alpermann T, Schnittger S, Haferlach T. Multiparameter flow cytometry provides independent prognostic information in patients with suspected myelodysplastic syndromes: a study on 804 patients. Cytometry B Clin Cytom 2015 Jan 10 online.

  68. Della Porta MG, Picone C, Tenore A, Yokose N, Malcovati L, Cazzola M, et al. Prognostic significance of reproducible immunophenotypic markers of marrow dysplasia. Haematologica. 2014;99(1):e8–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Falco P, Levis A, Stacchini A, Ciriello MM, Geuna M, Notari P, et al. Prognostic relevance of cytometric quantitative assessment in patients with myelodysplastic syndromes. Eur J Haematol. 2011;87(5):409–18.

    Article  CAS  PubMed  Google Scholar 

  70. Sandes AF, Kerbauy DM, Matarraz S, Chauffaille ML, Lopez A, Orfao A, et al. Combined flow cytometric assessment of CD45, HLA-DR, CD34, and CD117 expression is a useful approach for reliable quantification of blast cells in myelodysplastic syndromes. Cytometry B Clin Cytom. 2013;84(3):157–66.

    Article  PubMed  Google Scholar 

  71. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, Ahlgren T, Dahl IM, Dybedal I, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol. 2003;120(6):1037–46.

    Article  CAS  PubMed  Google Scholar 

  72. Alhan C, Westers TM, van der Helm LH, Eeltink C, Huls G, Witte BI, et al. Absence of aberrant myeloid progenitors by flow cytometry is associated with favorable response to azacitidine in higher risk myelodysplastic syndromes. Cytometry B Clin Cytom. 2014;86(3):207–15. Aplication of FCM in evaluation of response to Azacitidine treatment.

    Article  PubMed  Google Scholar 

  73. Oelschlaegel U, Westers TM, Mohr B, Kramer M, Parmentier S, Sockel K, et al. Myelodysplastic syndromes with a deletion 5q display a characteristic immunophenotypic profile suitable for diagnostics and response monitoring. Haematologica. 2015;100(3):e93–6.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Xu F, Li X, Chang CK, Guo J, Wu LY, He Q, et al. Establishment and validation of an updated diagnostic FCM scoring system based on pooled immunophenotyping in CD34+ blasts and its clinical significance for myelodysplastic syndromes. PLoS One. 2014;9(2), e88706.

    Article  PubMed Central  PubMed  Google Scholar 

  75. McDaniel JM, Zou JX, Fulp W, Chen DT, List AF, Epling-Burnette PK. Reversal of T-cell tolerance in myelodysplastic syndrome through lenalidomide immune modulation. Leukemia. 2012;26(6):1425–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Abou ZA, Saad AE, Komrokji RS, Zeidan AM. Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. J Blood Med. 2015;6:1–16.

    Google Scholar 

  77. Costantini B, Kordasti SY, Kulasekararaj AG, Jiang J, Seidl T, Abellan PP, et al. The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome. Haematologica. 2013;98(8):1196–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The author declares that she has no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Porwit.

Additional information

This article is part of the Topical Collection on Myelodysplastic Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porwit, A. Is There a Role for Flow Cytometry in the Evaluation of Patients With Myelodysplastic Syndromes?. Curr Hematol Malig Rep 10, 309–317 (2015). https://doi.org/10.1007/s11899-015-0272-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0272-3

Keywords

Navigation