Skip to main content

Advertisement

Log in

Genomic Instability in Chronic Myeloid Leukemia: Targets for Therapy?

  • Chronic Myeloid Leukemia (J Goldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Philadelphia positive (Ph+) chronic myeloid leukemia (CML) is characterized by the occurrence of nonrandom genetic and cytogenetic abnormalities during disease progression. Many of these abnormalities are markers for genes which, when altered, can drive the blastic transformation process. Thus, such genetic alterations may be manifestations of an underlying genomic instability resulting from a compromised DNA damage and repair response, leading to advanced stages of CML and resistance to therapy. This article examines the molecular pathways that may lead to genomic instability in CML and the potential of these pathway constituents to be therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Guilhot F, Apperley J, Kim DW, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood. 2007;109:4143–50.

    Article  PubMed  CAS  Google Scholar 

  2. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia--signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18:545–68. vii-viii.

    Article  PubMed  Google Scholar 

  3. Collins SJ, Groudine MT. Chronic myelogenous leukemia: amplification of a rearranged c-abl oncogene in both chronic phase and blast crisis. Blood. 1987;69:893–8.

    PubMed  CAS  Google Scholar 

  4. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002;107:76–94.

    Article  PubMed  CAS  Google Scholar 

  5. Elder PT, McMullin MF, Humphreys MW, et al. The finding of a reciprocal whole-arm translocation t(X;12)(p10;p10) in association with atypical chronic myeloid leukaemia. Med Oncol. 2010;27:760–2.

    Article  PubMed  CAS  Google Scholar 

  6. Kolomietz E, Al-Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood. 2001;97:3581–8.

    Article  PubMed  CAS  Google Scholar 

  7. Stuppia L, Calabrese G, Peila R, et al. p53 loss and point mutations are associated with suppression of apoptosis and progression of CML into myeloid blastic crisis. Cancer Genet Cytogenet. 1997;98:28–35.

    Article  PubMed  CAS  Google Scholar 

  8. Sadamori N, Matsunaga M, Yao E, et al. Chromosomal characteristics of chronic and blastic phases of Ph-positive chronic myeloid leukemia. Cancer Genet Cytogenet. 1985;15:17–24.

    Article  PubMed  CAS  Google Scholar 

  9. Becher R, Carbonell F, Bartram CR. Isochromosome 17q in Ph1-negative leukemia: a clinical, cytogenetic, and molecular study. Blood. 1990;75:1679–83.

    PubMed  CAS  Google Scholar 

  10. Collins S, Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature. 1982;298:679–81.

    Article  PubMed  CAS  Google Scholar 

  11. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.

    Article  PubMed  Google Scholar 

  12. Santos FP, Kantarjian H, Quintas-Cardama A, Cortes J. Evolution of therapies for chronic myelogenous leukemia. Cancer J. 2011;17:465–76.

    Article  PubMed  CAS  Google Scholar 

  13. • Soverini S, Gnani A, Colarossi S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114:2168–71. This important study indicates that Ph+ patients already harboring BCR-ABL mutations that lead to imatinib resistance have a higher likelihood of relapse associated with development of further mutations resistant to second-line or third-line TKIs, compared with patients who do not harbor mutations..

    Article  PubMed  CAS  Google Scholar 

  14. Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.

    Article  PubMed  CAS  Google Scholar 

  15. Wang JY. DNA damage and apoptosis. Cell Death Differ. 2001;8:1047–8.

    Article  PubMed  CAS  Google Scholar 

  16. Willman C, Hromas RA. Genomic alterations and chromosomal aberrations in human cancer. In: Kufe DW, Holland JF, Frei E, editors. Cancer medicine. London: BC Decker Inc; 2006. p. 104–34.

    Google Scholar 

  17. Popp HD, Bohlander SK. Genetic instability in inherited and sporadic leukemias. Genes Chromosomes Cancer. 2010;49:1071–81.

    Article  PubMed  CAS  Google Scholar 

  18. Giehl M, Fabarius A, Frank O, et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19:1192–7.

    Article  PubMed  CAS  Google Scholar 

  19. Wada C, Shionoya S, Fujino Y, et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood. 1994;83:3449–56.

    PubMed  CAS  Google Scholar 

  20. Rai R, Zheng H, He H, et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J. 2010;29:2598–610.

    Article  PubMed  CAS  Google Scholar 

  21. Sallmyr A, Fan J, Rassool FV. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 2008;270:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Canitrot Y, Lautier D, Laurent G, et al. Mutator phenotype of BCR–ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene. 1999;18:2676–80.

    Article  PubMed  CAS  Google Scholar 

  23. Stoklosa T, Poplawski T, Koptyra M, et al. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res. 2008;68:2576–80.

    Article  PubMed  CAS  Google Scholar 

  24. Burke BA, Carroll M. BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia. 2010;24:1105–12.

    Article  PubMed  CAS  Google Scholar 

  25. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  PubMed  CAS  Google Scholar 

  26. Fialkow PJ, Martin PJ, Najfeld V, et al. Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood. 1981;58:158–63.

    PubMed  CAS  Google Scholar 

  27. O’Dwyer ME, Gatter KM, Loriaux M, et al. Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia. 2003;17:481–7.

    Article  PubMed  Google Scholar 

  28. Brady N, Gaymes TJ, Cheung M, et al. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res. 2003;63:1798–805.

    PubMed  CAS  Google Scholar 

  29. Gaymes TJ, Mufti GJ, Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res. 2002;62:2791–7.

    PubMed  CAS  Google Scholar 

  30. Sallmyr A, Tomkinson AE, Rassool FV. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood. 2008;112:1413–23.

    Article  PubMed  CAS  Google Scholar 

  31. Salloukh HF, Laneuville P. Increase in mutant frequencies in mice expressing the BCR-ABL activated tyrosine kinase. Leukemia. 2000;14:1401–4.

    Article  PubMed  CAS  Google Scholar 

  32. Voncken JW, Kaartinen V, Pattengale PK, et al. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood. 1995;86:4603–11.

    PubMed  CAS  Google Scholar 

  33. Dierov J, Sanchez PV, Burke BA, et al. BCR/ABL induces chromosomal instability after genotoxic stress and alters the cell death threshold. Leukemia. 2009;23:279–86.

    Article  PubMed  CAS  Google Scholar 

  34. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441–53.

    Article  PubMed  CAS  Google Scholar 

  35. Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275:24273–8.

    Article  PubMed  CAS  Google Scholar 

  36. Nowicki MO, Falinski R, Koptyra M, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104:3746–53.

    Article  PubMed  CAS  Google Scholar 

  37. Koptyra M, Falinski R, Nowicki MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108:319–27.

    Article  PubMed  CAS  Google Scholar 

  38. Tarumoto T, Nagai T, Ohmine K, et al. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp Hematol. 2004;32:375–81.

    Article  PubMed  CAS  Google Scholar 

  39. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  PubMed  CAS  Google Scholar 

  40. Kim JH, Chu SC, Gramlich JL, et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood. 2005;105:1717–23.

    Article  PubMed  CAS  Google Scholar 

  41. • Naughton R, Quiney C, Turner SD, Cotter TG. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia. 2009;23:1432–40. This study demonstrates for the first time that Bcr-Abl-induced ROS increase survival signaling through the PI3K/AKT pathway..

    Article  PubMed  CAS  Google Scholar 

  42. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15:2177–96.

    Article  PubMed  CAS  Google Scholar 

  43. Dierov J, Dierova R, Carroll M. BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell. 2004;5:275–85.

    Article  PubMed  CAS  Google Scholar 

  44. Bae I, Rih JK, Kim HJ, et al. BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle. 2005;4:1641–66.

    Article  PubMed  CAS  Google Scholar 

  45. Wang RH, Yu H, Deng CX. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci U S A. 2004;101:17108–13.

    Article  PubMed  CAS  Google Scholar 

  46. Deutsch E, Jarrousse S, Buet D, et al. Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood. 2003;101:4583–8.

    Article  PubMed  CAS  Google Scholar 

  47. Wolanin K, Magalska A, Kusio-Kobialka M, et al. Expression of oncogenic kinase Bcr-Abl impairs mitotic checkpoint and promotes aberrant divisions and resistance to microtubule-targeting agents. Mol Cancer Ther. 2010;9:1328–38.

    Article  PubMed  CAS  Google Scholar 

  48. Shah JV, Cleveland DW. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell. 2000;103:997–1000.

    Article  PubMed  CAS  Google Scholar 

  49. • Valeri A, Alonso-Ferrero ME, Rio P, et al. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells. PLoS One. 2010;5:e15525. This study demonstrates for the first time that BCR-ABL can disrupt the Fanconi anemia/BRCA pathway, leading to an increase in chromosomal aberrations.

    Article  PubMed  CAS  Google Scholar 

  50. D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.

    Article  PubMed  Google Scholar 

  51. Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst). 2007;6:923–35.

    Article  CAS  Google Scholar 

  52. Hartlerode AJ, Scully R. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J. 2009;423:157–68.

    Article  PubMed  CAS  Google Scholar 

  53. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.

    Article  PubMed  CAS  Google Scholar 

  54. Keller KL, Overbeck-Carrick TL, Beck DJ. Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat Res. 2001;486:21–9.

    PubMed  CAS  Google Scholar 

  55. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283:1–5.

    Article  PubMed  CAS  Google Scholar 

  56. Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.

    Article  PubMed  CAS  Google Scholar 

  57. Slupianek A, Schmutte C, Tombline G, et al. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell. 2001;8:795–806.

    Article  PubMed  CAS  Google Scholar 

  58. Martin RW, Orelli BJ, Yamazoe M, et al. RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res. 2007;67:9658–65.

    Article  PubMed  CAS  Google Scholar 

  59. Slupianek A, Dasgupta Y, Ren SY, et al. Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood. 2011;118:1062–8.

    Article  PubMed  CAS  Google Scholar 

  60. Weinstock DM, Richardson CA, Elliott B, Jasin M. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst). 2006;5:1065–74.

    Article  CAS  Google Scholar 

  61. Fernandes MS, Reddy MM, Gonneville JR, et al. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood. 2009;114:1813–9.

    Article  PubMed  CAS  Google Scholar 

  62. Jin S, Weaver DT. Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J. 1997;16:6874–85.

    Article  PubMed  CAS  Google Scholar 

  63. Lees-Miller SP, Chen YR, Anderson CW. Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol. 1990;10:6472–81.

    PubMed  CAS  Google Scholar 

  64. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006;124:301–13.

    Article  PubMed  CAS  Google Scholar 

  65. Buck D, Malivert L, de Chasseval R, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124:287–99.

    Article  PubMed  CAS  Google Scholar 

  66. Nussenzweig A, Nussenzweig MC. A backup DNA repair pathway moves to the forefront. Cell. 2007;131:223–5.

    Article  PubMed  CAS  Google Scholar 

  67. Deutsch E, Dugray A, Abdul Karim B, et al. BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood. 2001;97:2084–90.

    Article  PubMed  CAS  Google Scholar 

  68. Slupianek A, Poplawski T, Jozwiakowski SK, et al. BCR/ABL stimulates WRN to promote survival and genomic instability. Cancer Res. 2011;71:842–51.

    Article  PubMed  CAS  Google Scholar 

  69. Canitrot Y, Laurent G, Astarie-Dequeker C, et al. Enhanced expression and activity of DNA polymerase beta in chronic myelogenous leukemia. Anticancer Res. 2006;26:523–5.

    PubMed  CAS  Google Scholar 

  70. Canitrot Y, Falinski R, Louat T, et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood. 2003;102:2632–7.

    Article  PubMed  CAS  Google Scholar 

  71. Sliwinski T, Czechowska A, Szemraj J, et al. STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat Res. 2008;654:162–7.

    PubMed  CAS  Google Scholar 

  72. Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16:122–31.

    PubMed  Google Scholar 

  73. Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117:5816–26.

    Article  PubMed  CAS  Google Scholar 

  74. Mochizuki T, Furuta S, Mitsushita J, et al. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene. 2006;25:3699–707.

    Article  PubMed  CAS  Google Scholar 

  75. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.

    Article  PubMed  CAS  Google Scholar 

  76. Bonovolias ID, Tsiftsoglou AS. Hemin counteracts the repression of Bcl-2 and NrF2 genes and the cell killing induced by imatinib in human Bcr-Abl(+) CML cells. Oncol Res. 2009;17:535–47.

    Article  PubMed  Google Scholar 

  77. Mayerhofer M, Florian S, Krauth MT, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64:3148–54.

    Article  PubMed  CAS  Google Scholar 

  78. Mayerhofer M, Gleixner KV, Mayerhofer J, et al. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood. 2008;111:2200–10.

    Article  PubMed  CAS  Google Scholar 

  79. Larson RA, Wang Y, Banerjee M, et al. Prevalence of the inactivating 609C–>T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood. 1999;94:803–7.

    PubMed  CAS  Google Scholar 

  80. Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct Biol. 2009;9:7.

    Article  PubMed  Google Scholar 

  81. Rassool FV, Tomkinson AE. Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci. 2010;67:3699–710.

    Article  PubMed  CAS  Google Scholar 

  82. Nelson EA, Walker SR, Weisberg E, et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood. 2011;117:3421–9.

    Article  PubMed  CAS  Google Scholar 

  83. Poplawski T, Blasiak J. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells. Mol Biol Rep. 2010;37:2309–15.

    Article  PubMed  CAS  Google Scholar 

  84. Tobin LA, Robert C, Nagaria P, et al. Targeting abnormal DNA repair in therapy-resistant breast cancers. Mol Cancer Res. 2012;10(1):96–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Kara Scheibner for careful reading of our manuscript. This work was supported by the Valvano Foundation and the Maryland Stem Cell Fund.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Rassool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muvarak, N., Nagaria, P. & Rassool, F.V. Genomic Instability in Chronic Myeloid Leukemia: Targets for Therapy?. Curr Hematol Malig Rep 7, 94–102 (2012). https://doi.org/10.1007/s11899-012-0119-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-012-0119-0

Keywords

Navigation