Skip to main content

Advertisement

Log in

Update on developmental therapeutics for acute lymphoblastic leukemia

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Liem NL, Papa RA, Milross CG, et al.: Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004, 103:3905–3914.

    Article  PubMed  CAS  Google Scholar 

  2. Teachey DT, Obzut DA, Cooperman J, et al.: The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006, 107:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  3. Neale G, Su X, Morton CL, et al.: Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008, 14:4572–4583.

    Article  PubMed  CAS  Google Scholar 

  4. Mullighan CG, Goorha S, Radtke I, et al.: Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007, 446:758–764.

    Article  PubMed  CAS  Google Scholar 

  5. Mullighan CG, Su X, Zhang J, et al.: Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009, 360:470–480.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz KR, Bowman WP, Slayton W, et al.: Improved early event free survival (EFS) in children with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) with intensive imatinib in combination with high dose chemotherapy: Children’s Oncology Group (COG) Study AALL0031 [abstract 4]. Blood (ASH Annual Meeting Abstracts) 2007, 110:Abstract 4.

  7. Yanada M, Ohno R, Naoe T: Recent advances in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol 2009, 89:3–13.

    Article  PubMed  CAS  Google Scholar 

  8. Carter PJ, Senter PD: Antibody-drug conjugates for cancer therapy. Cancer J 2008, 14:154–169.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis Phillips GD, Li G, Dugger DL, et al.: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008, 68:9280–9290.

    Article  PubMed  CAS  Google Scholar 

  10. Burris HA, Vukelja S, Rugo HS, et al.: A phase II study of trastuzumab-DM1 (T-DM1), a HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (MBC) [abstract 155]. ASCO 2008 Breast Cancer Symposium 2008, Abstract 155.

  11. Francisco JA, Cerveny CG, Meyer DL, et al.: cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003, 102:1458–1465.

    Article  PubMed  CAS  Google Scholar 

  12. Younes A, Forero-Torres A, Bartlett NL, et al.: Multiple complete responses in a phase 1 dose-escalation study of the antibody-drug conjugate SGN-35 in patients with relapsed or refractory CD30-positive lymphomas [abstract 1006]. Blood (ASH Annual Meeting Abstracts) 2008, 112:Abstract 1006.

  13. Kreitman RJ: Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol 2001, 2:313–325.

    Article  PubMed  CAS  Google Scholar 

  14. Aboukameel A, Goustin AS, Mohammad R, et al.: Superior anti-tumor activity of the CD19-directed immunotoxin, SAR3419 to rituximab in non-Hodgkins xenograft animal models: preclinical evaluation [abstract 2339]. Blood (ASH Annual Meeting Abstracts) 2007, 110:Abstract 2339.

  15. Lock R, Carol H, Houghton P, et al.: Pediatric preclinical testing program (PPTP) evaluation of the anti-CD19-DM4 conjugated antibody SAR3419 [abstract 192]. Eur J Cancer Suppl 2008, 6:61.

    Article  Google Scholar 

  16. Gerber HP, Kung-Sutherland M, Stone I, et al.: Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 2009, 113:4352–4361.

    Article  PubMed  CAS  Google Scholar 

  17. DiJoseph JF, Armellino DC, Boghaert ER, et al.: Antibodytargeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004, 103:1807–1814.

    Article  PubMed  CAS  Google Scholar 

  18. DiJoseph JF, Dougher MM, Armellino DC, et al.: Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 2007, 21:2240–2245.

    Article  PubMed  CAS  Google Scholar 

  19. Fayad L, Patel HK, Verhoef G, et al.: Clinical activity of the immunoconjugate CMC-544 in B-cell malignancies: preliminary report of the expanded maximum tolerated dose (MTD) cohort of a phase 1 study [abstract 2711]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 2711.

  20. Kreitman RJ, Squires DR, Stetler-Stevenson M, et al.: Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 2005, 23:6719–6729.

    Article  PubMed  CAS  Google Scholar 

  21. Alderson RF, Kreitman RJ, Chen T, et al.: CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 2009, 15:832–839.

    Article  PubMed  CAS  Google Scholar 

  22. Wayne A, Findley HW, Lew G, et al.: Pre-clinical studies and phase I clinical trial of the anti-CD22 immunotoxin CAT-3888 (BL22) for pediatric acute lymphoblastic leukemia (ALL) [abstract 9560]. J Clin Oncol 2007, 25 (18 Suppl): Abstract 9560.

    Google Scholar 

  23. Hoffmann P, Hofmeister R, Brischwein K, et al.: Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005, 115:98–104.

    Article  PubMed  CAS  Google Scholar 

  24. Dreier T, Baeuerle PA, Fichtner I, et al.: T cell costimulusindependent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J Immunol 2003, 170:4397–4402.

    PubMed  CAS  Google Scholar 

  25. Schlereth B, Quadt C, Dreier T, et al.: T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol Immunother 2006, 55:503–514.

    Article  PubMed  CAS  Google Scholar 

  26. Bargou R, Leo E, Zugmaier G, et al.: Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008, 321:974–977.

    Article  PubMed  CAS  Google Scholar 

  27. Topp M, Goekbuget N, Kufer P, et al.: Treatment with anti-CD 19 BiTE antibody blinatumomab (MT103 /MEDI-538) is able to eliminate minimal residual disease (MRD) in patients with B-precursor acute lymphoblastic leukemia (ALL): first results of an ongoing phase II study [abstract 1926]. Blood (ASH Annual Meeting Abstracts) 2008, 112: Abstract 1926.

  28. Leonard JP, Goldenberg DM: Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene 2007, 26:3704–3713.

    Article  PubMed  CAS  Google Scholar 

  29. Raetz EA, Cairo MS, Borowitz MJ, et al.: Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol 2008, 26:3756–3762.

    Article  PubMed  CAS  Google Scholar 

  30. Dworzak MN, Schumich A, Printz D, et al.: CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008, 112:3982–3988.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas DA, Kantarjian H, Faderl S, et al.: Outcome after frontline therapy with the modified hyper-CVAD regimen with or without rituximab for de novo acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LL) [abstract 1931]. Blood (ASH Annual Meeting Abstracts) 2008, 112:Abstract 1931.

  32. le Viseur C, Hotfilder M, Bomken S, et al.: In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008, 14:47–58.

    Article  PubMed  Google Scholar 

  33. Infante J, Dees EC, Cohen RB, et al.: Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of MLN8237, a selective Aurora A kinase inhibitor, in the United States [abstract 280]. Eur J Cancer Suppl 2008, 6:Abstract 280.

    Google Scholar 

  34. Houghton PJ, Morton CL, Maris JM, et al.: Pediatric preclinical testing program (PPTP) evaluation of the Aurora A kinase inhibitor MLN8237 [abstract 2997]. Proceedings of the 99th Annual Meeting of the American Association for Cancer Research. San Diego, CA; April 12–16, 2008.

  35. Smith MA, Houghton PJ, Morton CL, et al.: Pediatric preclinical testing program (PPTP) stage 2 testing of the Aurora A kinase inhibitor MLN8237 [abstract 286]. Eur J Cancer Suppl 2008, 6:93.

    Google Scholar 

  36. Del Gaizo Moore V, Schlis KD, Sallan SE, et al.: BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 2008, 111:2300–2309.

    Article  PubMed  Google Scholar 

  37. Robinson BW, Behling KC, Gupta M, et al.: Abundant antiapoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol 2008, 141:827–839.

    Article  PubMed  CAS  Google Scholar 

  38. Tse C, Shoemaker AR, Adickes J, et al.: ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008, 68:3421–3428.

    Article  PubMed  CAS  Google Scholar 

  39. Lock R, Carol H, Houghton PJ, et al.: Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:1181–1189.

    Article  PubMed  Google Scholar 

  40. Wilson WH, Czuczman MS, LaCasce AS, et al.: A phase 1 study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies [abstract 8511]. J Clin Oncol 2008, 26(May 20 suppl):Abstract 8511.

  41. Roberts A, Gandhi L, O’Connor OA, et al.: Reduction in platelet counts as a mechanistic biomarker and guide for adaptive dose-escalation in phase I studies of the Bcl-2 family inhibitor ABT-263 [abstract 3542]. J Clin Oncol 2008, 26(May 20 suppl):Abstract 3542.

    Google Scholar 

  42. Zhang H, Nimmer PM, Tahir SK, et al.: Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 2007, 14:943–951.

    Article  PubMed  CAS  Google Scholar 

  43. Kang MH, Kang YH, Szymanska B, et al.: Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. Blood 2007, 110:2057–2066.

    Article  PubMed  CAS  Google Scholar 

  44. Shore G, Watson M, Roulston A, et al.: Obatoclax (GX15-070) is a potent antagonist of constitutive Mcl-1/Bak interactions in intact mitochondrial membrane and synergizes with bortezomib in mantle cell lymphoma [abstract 832]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 832.

  45. Schimmer AD, O’Brien S, Kantarjian H, et al.: A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 2008, 14:8295–8301.

    Article  PubMed  CAS  Google Scholar 

  46. O’Brien SM, Claxton DF, Crump M, et al.: Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009, 113:299–305.

    Article  PubMed  Google Scholar 

  47. Blum KA, Johnson JL, Niedzwiecki D, et al.: Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: Cancer and Leukemia Group B protocol 50206. Leuk Lymphoma 2007, 48:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  48. Kordes U, Krappmann D, Heissmeyer V, et al.: Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000:14(3):399–402.

    Article  PubMed  CAS  Google Scholar 

  49. Vilimas T, Mascarenhas J, Palomero T, et al.: Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007, 13:70–77.

    Article  PubMed  CAS  Google Scholar 

  50. Houghton PJ, Morton CL, Kolb EA, et al.: Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:37–45.

    Article  PubMed  Google Scholar 

  51. Horton TM, Gannavarapu A, Blaney SM, et al.: Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006, 58:13–23.

    Article  PubMed  CAS  Google Scholar 

  52. Horton TM, Pati D, Plon SE, et al.: A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res 2007, 13:1516–1522.

    Article  PubMed  CAS  Google Scholar 

  53. Messinger YH, Gaynon PS, Raetz E, et al.: Remarkable activity of bortezomib combined with chemotherapy in a phase I study of relapsed childhood acute lymphoblastic leukemia (ALL). A report from the Therapeutic Advances in Childhood Leukemia (TACL) Consortium [abstract 1919]. Blood (ASH Annual Meeting Abstracts) 2008, 112:Abstract 1919.

  54. Houghton PJ, Morton CL, Kolb EA, et al.: Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:799–805.

    Article  PubMed  Google Scholar 

  55. Teachey DT, Sheen C, Hall J, et al.: mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood 2008, 112:2020–2023.

    Article  PubMed  CAS  Google Scholar 

  56. Wei G, Twomey D, Lamb J, et al.: Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006, 10:331–342.

    Article  PubMed  CAS  Google Scholar 

  57. Houghton PJ, Morton CL, Maris JM, et al.: Pediatric Preclinical Testing Program (PPTP) evaluation of rapamycin combined with cytotoxic drugs used frequently in treatment of childhood cancer [abstract 190]. Eur J Cancer Suppl 2008, 6:60.

    Article  Google Scholar 

  58. Lacronique V, Boureux A, Valle VD, et al.: A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997:278:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  59. Reiter A, Walz C, Watmore A, et al.: The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005, 65:2662–2667.

    Article  PubMed  CAS  Google Scholar 

  60. Flex E, Petrangeli V, Stella L, et al.: Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 2008, 205:751–758.

    Article  PubMed  CAS  Google Scholar 

  61. Jeong EG, Kim MS, Nam HK, et al.: Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 2008, 14:3716–3721.

    Article  PubMed  CAS  Google Scholar 

  62. Bercovich D, Ganmore I, Scott LM, et al.: Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 2008, 372:1484–1492.

    Article  PubMed  CAS  Google Scholar 

  63. Kearney L, Gonzalez De Castro D, Yeung J, et al.: Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood 2009, 113:646–648.

    Article  PubMed  CAS  Google Scholar 

  64. Gaikwad A, Rye CL, Devidas M, et al.: Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol 2009, 144:930–932.

    Article  PubMed  CAS  Google Scholar 

  65. Mullighan CG, Zhang J, Harvey RC, et al.: Frequent JAK mutations in pediatric acute lymphoblastic leukemia with poor outcome: A new therapeutic target in resistant disease [abstract LB-92]. Proceedings of the 100th Annual Meeting of the American Association for Cancer Research, Denver, CO; April 18–22, 2009.

  66. Fridman J, Nussenzveig R, Liu P, et al.: Discovery and preclinical characterization of INCB018424, a selective JAK2 inhibitor for the treatment of myeloproliferative disorders [abstract 3538]. Blood (ASH Annual Meeting Abstracts) 2007, 110:Abstract 3538.

  67. Verstovsek S, Kantarjian HM, Pardanani AD, et al.: The JAK inhibitor, INCB 018424, demonstrates durable and marked clinical responses in primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia [abstract 1762]. Blood (ASH Annual Meeting Abstracts) 2008, 112: Abstract 1762.

  68. Geron I, Abrahamsson AE, Barroga CF, et al.: Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 2008, 13:321–330.

    Article  PubMed  CAS  Google Scholar 

  69. Pardanani AD, Gotlib J, Jamieson CH, et al.: A phase I study of TG101348, an orally bioavailable JAK2-selective inhibitor, in patients with myelofibrosis [abstract 97]. Blood 2008, 112:Abstract 97.

    Google Scholar 

  70. Armstrong SA, Kung AL, Mabon ME, et al.: Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003, 3:173–183.

    Article  PubMed  CAS  Google Scholar 

  71. Brown P, Levis M, Shurtleff S, et al.: FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005, 105:812–820.

    Article  PubMed  CAS  Google Scholar 

  72. Weng AP, Ferrando AA, Lee W, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306:269–271.

    Article  PubMed  CAS  Google Scholar 

  73. DeAngelo DJ, Stone RM, Silverman LB, et al.: A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [abstract 6585]. J Clin Oncol 2006, 24 (18S):Abstract 6585.

    Google Scholar 

  74. Real PJ, Tosello V, Palomero T, et al.: Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009, 15:50–58.

    Article  PubMed  CAS  Google Scholar 

  75. Ravandi F, Gandhi V. Novel purine nucleoside analogues for T-cell-lineage acute lymphoblastic leukaemia and lymphoma. Expert Opin Investig Drugs 2006, 15:1601–1613.

    Article  PubMed  CAS  Google Scholar 

  76. Houghton PJ, Maris JM, Courtright J, et al.: Initial testing of the histone deacetylase inhibitor vorinostat by the Pediatric Preclinical Testing Program [abstract C226]. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. San Francisco, CA; October 22–26, 2007.

  77. Houghton PJ, Maris JM, Courtright J, et al.: Pediatric Preclinical Testing Program (PPTP) evaluation of the EGFR and ErbB2 inhibitor lapatinib [abstract B118]. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. San Francisco, CA; October 22–26, 2007.

  78. Smith MA, Morton CL, Maris JM, et al.: Pediatric Preclinical Testing Program (PPTP) evaluation of the MEK1/2 inhibitor AZD6244 (ARRY-142886) [abstract 2998]. Proceedings of the 99th Annual Meeting of the American Association for Cancer Research. San Diego, CA; April 12–16, 2008.

  79. Maris JM, Courtright J, Houghton PJ, et al.: Initial testing of the VEGFR inhibitor AZD2171 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2008, 50:581–587.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.A. Update on developmental therapeutics for acute lymphoblastic leukemia. Curr Hematol Malig Rep 4, 175–182 (2009). https://doi.org/10.1007/s11899-009-0024-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-009-0024-3

Keywords

Navigation