Skip to main content

Advertisement

Log in

Chronic myelogenous leukemia stem cells: What’s new?

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder that arises in the hematopoietic stem cell compartment. CML is one of the best-understood malignancies, as it results from a single genetic mutation, the fusion oncogene BCR-ABL, which has been widely studied. Specific tyrosine kinase inhibitors have been developed to target BCR-ABL in CML, but these agents fail to eliminate the CML stem cell population and thus are unlikely to cure CML. This article reviews recent developments in the biology and treatment of CML, specifically focusing on CML stem cells. Significant progress continues to be made in our understanding of CML stem cell biology, which has wider implications within the cancer stem cell field. We are also beginning to see the identification of novel therapies that specifically target the CML stem cell. These are exciting times in the quest to cure CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rowley JD: Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973, 243:290–293.

    Article  PubMed  CAS  Google Scholar 

  2. Savona M, Talpaz M: Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 2008, 8:341–350.

    Article  PubMed  CAS  Google Scholar 

  3. Wang JC, Lapidot T, Cashman JD, et al.: High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998, 91:2406–2414.

    PubMed  CAS  Google Scholar 

  4. Holyoake T, Jiang X, Eaves C, Eaves A: Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999, 94:2056–2064.

    PubMed  CAS  Google Scholar 

  5. Copland M, Hamilton A, Elrick LJ, et al.: Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML, but does not eliminate the quiescent fraction. Blood 2006, 107:4532–4539.

    Article  PubMed  CAS  Google Scholar 

  6. Graham SM, Jorgensen HG, Allan E, et al.: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002, 99:319–325.

    Article  PubMed  CAS  Google Scholar 

  7. Jorgensen HG, Allan EK, Jordanides NE, et al.: Nilotinib exerts equipotent anti-proliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007, 109:4016–4019.

    Article  PubMed  CAS  Google Scholar 

  8. Konig H, Holyoake TL, Bhatia R: Effective and selective inhibition of chronic myeloid leukemia primitive hematopoietic progenitors by the dual Src/Abl kinase inhibitor SKI-606. Blood 2008, 111:2329–2338.

    Article  PubMed  CAS  Google Scholar 

  9. Jamieson CH, Ailles LE, Dylla SJ, et al.: Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004, 351:657–667.

    Article  PubMed  CAS  Google Scholar 

  10. Druker BJ, Guilhot F, O’Brien SG, et al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006, 355:2408–2417.

    Article  PubMed  CAS  Google Scholar 

  11. Kantarjian H, Giles F, Wunderle L, et al.: Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006, 354:2542–2551.

    Article  PubMed  Google Scholar 

  12. Talpaz M, Shah NP, Kantarjian H, et al.: Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006, 354:2531–2541.

    Article  PubMed  CAS  Google Scholar 

  13. Hughes TP, Kaeda J, Branford S, et al.: Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003, 349:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  14. Branford S, Rudzki Z, Grigg A, et al.: BCR-ABL levels continue to decrease up to 42 months after commencement of standard dose imatinib in patients with newly diagnosed chronic phase CML who achieve a molecular response. Blood 2004, 104:82a.

    Article  Google Scholar 

  15. Bhatia R, Holtz M, Niu N, et al.: Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003, 101:4701–4707.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou LL, Zhao Y, Ringrose A, et al.: AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J Exp Med 2008, 205:2657–2671.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang X, Zhao Y, Chan WY, et al.: Deregulated expression in Ph+ human leukemias of AHI-1, a gene activated by insertional mutagenesis in mouse models of leukemia. Blood 2004, 103:3897–3904.

    Article  PubMed  CAS  Google Scholar 

  18. Ito K, Bernardi R, Morotti A, et al.: PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008, 453:1072–1078.

    Article  PubMed  CAS  Google Scholar 

  19. Jin L, Tabe Y, Konoplev S, et al.: CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008, 7:48–58.

    Article  PubMed  CAS  Google Scholar 

  20. Nie Y, Han YC, Zou YR: CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008, 205:777–783.

    Article  PubMed  CAS  Google Scholar 

  21. Geay JF, Buet D, Zhang Y, et al.: p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 2005, 65:2676–2683.

    Article  PubMed  CAS  Google Scholar 

  22. Eiring AM, Neviani P, Santhanam R, et al.: Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis. Blood 2008, 111:816–828.

    Article  PubMed  CAS  Google Scholar 

  23. Perrotti D, Neviani P: From mRNA metabolism to cancer therapy: chronic myelogenous leukemia shows the way. Clin Cancer Res 2007, 13:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao C, Blum J, Chen A, et al.: Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007, 12:528–541.

    Article  PubMed  CAS  Google Scholar 

  25. Minami Y, Stuart SA, Ikawa T, et al.: BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci U S A 2008, 105:17967–17972.

    Article  PubMed  CAS  Google Scholar 

  26. Hu Y, Chen Y, Douglas L, Li S: Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009, 23:109–116.

    Article  PubMed  CAS  Google Scholar 

  27. Abrahamsson A, Geron I, Gotlib J, et al.: Missplicing of glycogen synthase kinase 3 beta: a potential mechanism of blast crisis chronic myeloid leukemia stem cell generation [abstract]. Blood 2007, 110:238a–239a.

    Google Scholar 

  28. Guzman ML, Li X, Corbett CA, et al.: Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 2007, 110:4436–4444.

    Article  PubMed  CAS  Google Scholar 

  29. Kavalerchik E, Gotlib J, Geron I, et al.: Inhibition of chronic myelogenous leukemia stem cells with novel WNT antagonists [abstract]. Blood 2006, 108:74a.

    Article  Google Scholar 

  30. Dierks C, Beigi R, Guo GR, et al.: Expansion of Bcr-Ablpositive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008, 14:238–249.

    Article  PubMed  CAS  Google Scholar 

  31. Radich JP, Dai H, Mao M, et al.: Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 2006, 103:2794–2799.

    Article  PubMed  CAS  Google Scholar 

  32. Copland M, Pellicano F, Richmond L, et al.: BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 2008, 111:2843–2853.

    Article  PubMed  CAS  Google Scholar 

  33. Pellicano F, Copland M, Jorgensen H, et al.: The farnesyltransferase inhibitor BMS-214662 selectively targets primary CML stem cells through activation of caspases [abstract]. Br J Haematol 2008, 141(Suppl 1):121.

    Google Scholar 

  34. Strauss AC, Chu S, Holyoake T, Bhatia R: Effective induction of apoptosis in chronic myeloid leukemia CD34+ cells by the histone deacetylase inhibitor LAQ824 in combination with imatinib [abstract]. Blood 2007, 110:312a.

    Google Scholar 

  35. Burgess A, Ruefli A, Beamish H, et al.: Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 2004, 23:6693–6701.

    Article  PubMed  CAS  Google Scholar 

  36. Neviani P, Santhanam R, Ma Y, et al.: Activation of PP2A by FTY720 inhibits survival and self-renewal of the Ph(+) chronic myelogenous leukemia (CML) CD34+/CD38- stem cell through the simultaneous suppression of BCR/ABL and BCR/ABL-independent signals [abstract]. Blood 2008, 112:77a.

    Google Scholar 

  37. Neviani P, Santhanam R, Trotta R, et al.: The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005, 8:355–368.

    Article  PubMed  CAS  Google Scholar 

  38. Neering SJ, Bushnell T, Sozer S, et al.: Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 2007, 110:2578–2585.

    Article  PubMed  CAS  Google Scholar 

  39. Komarova NL, Wodarz D: Effect of cellular quiescence on the success of targeted CML therapy. PLoS ONE 2007, 2:e990.

    Article  PubMed  Google Scholar 

  40. Michor F, Hughes TP, Iwasa Y, et al.: Dynamics of chronic myeloid leukaemia. Nature 2005, 435:1267–1270.

    Article  PubMed  CAS  Google Scholar 

  41. Roeder I, Horn M, Glauche I, et al.: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 2006, 12:1181–1184.

    Article  PubMed  CAS  Google Scholar 

  42. Chu S, Xu H, Shah NP, et al.: Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005, 105:2093–2098.

    Article  PubMed  CAS  Google Scholar 

  43. Sherbenou DW, Wong MJ, Humayun A, et al.: Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib. Leukemia 2007, 21:489–493.

    Article  PubMed  CAS  Google Scholar 

  44. Jiang X, Saw KM, Eaves A, Eaves C: Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 2007, 99:680–693.

    Article  PubMed  CAS  Google Scholar 

  45. Jiang X, Zhao Y, Smith C, et al.: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21:926–935.

    PubMed  CAS  Google Scholar 

  46. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC: Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006, 108:1370–1373.

    Article  PubMed  CAS  Google Scholar 

  47. Hiwase DK, Saunders V, Hewett D, et al.: Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 2008, 14:3881–3888.

    Article  PubMed  CAS  Google Scholar 

  48. Brendel C, Scharenberg C, Dohse M, et al.: Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007, 21:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  49. Larson RA, Druker BJ, Guilhot F, et al.: Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 2008, 111:4022–4028.

    Article  PubMed  CAS  Google Scholar 

  50. Picard S, Titier K, Etienne G, et al.: Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007, 109:3496–3499.

    Article  PubMed  CAS  Google Scholar 

  51. Donato NJ, Wu JY, Stapley J, et al.: Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 2004, 64:672–677

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mhairi Copland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copland, M. Chronic myelogenous leukemia stem cells: What’s new?. Curr Hematol Malig Rep 4, 66–73 (2009). https://doi.org/10.1007/s11899-009-0010-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-009-0010-9

Keywords

Navigation