Skip to main content

Advertisement

Log in

Prevention and Treatment of Thrombotic and Hemorrhagic Complications in Patients Supported by Continuous-Flow Left Ventricular Assist Devices

  • Pharmacologic Therapy (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to describe the current knowledge in prevention and treatment of thrombotic (pump thrombosis and ischemic stroke) and bleeding (gastrointestinal and hemorrhagic stroke) complications in patients supported by continuous-flow left ventricular assist devices (CF-LVAD).

Recent Findings

Left ventricular assist devices (LVADs) are now widely used for the management of end-stage heart failure. Unfortunately, in spite of the indisputable positive impact LVADs have on patients, the frequency and severity of complications are limitations of this therapy. Stroke, pump thrombosis, and gastrointestinal bleeding are among the most serious and frequent complications in these patients.

Summary

The balance between hemorrhagic and thrombotic complications in patients supported with CF-LVAD is difficult as most patients do not necessarily fit a “bleeder” or a “clotter” profile but rather move from one side to the other of the thrombotic/bleeding spectrum. Further research is necessary to better understand the risk factors and mechanisms involved in the development of these complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  2. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.

    Article  PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1495–504.

    Article  Google Scholar 

  4. John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann Thorac Surg 2008;86(4):1227–1234; discussion 34-5.

  5. Slaughter MS, Naka Y, John R, Boyle A, Conte JV, Russell SD, et al. Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2010;29(6):616–24.

    Article  Google Scholar 

  6. Boyle AJ, Russell SD, Teuteberg JJ, Slaughter MS, Moazami N, Pagani FD, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2009;28(9):881–7.

    Article  Google Scholar 

  7. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  8. Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(1):12–22.

    Article  Google Scholar 

  9. Mehra MR, Stewart GC, Uber PA. The vexing problem of thrombosis in long-term mechanical circulatory support. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(1):1–11.

    Article  Google Scholar 

  10. Stulak JM, Lee D, Haft JW, Romano MA, Cowger JA, Park SJ, et al. Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(1):60–4.

    Article  Google Scholar 

  11. Katz JN, Adamson RM, John R, Tatooles A, Sundareswaran K, Kallel F, et al. Safety of reduced anti-thrombotic strategies in HeartMate II patients: a one-year analysis of the US-TRACE Study. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1542–8.

    Article  Google Scholar 

  12. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57(19):1890–8.

    Article  PubMed  Google Scholar 

  13. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Myers S, Acker MA, et al. Pump thrombosis in the Thoratec HeartMate II device: an update analysis of the INTERMACS Registry. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1515–26.

    Article  Google Scholar 

  14. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(1):23–34.

    Article  Google Scholar 

  15. Goldstein DJ, John R, Salerno C, Silvestry S, Moazami N, Horstmanshof D, et al. Algorithm for the diagnosis and management of suspected pump thrombus. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2013;32(7):667–70.

    Article  Google Scholar 

  16. Maltais S, Kilic A, Nathan S, Keebler M, Emani S, Ransom J, et al. PREVENtion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2017;36(1):1–12.

    Article  Google Scholar 

  17. • Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50. This publication demonstrates the decreased rates of LVAD thrombosis with a new axial CF-LVAD.

    Article  PubMed  Google Scholar 

  18. Thomas MD, Wood C, Lovett M, Dembo L, O'Driscoll G. Successful treatment of rotary pump thrombus with the glycoprotein IIb/IIIa inhibitor tirofiban. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2008;27(8):925–7.

    Article  Google Scholar 

  19. Al-Quthami AH, Jumean M, Kociol R, Pham DT, Kiernan M, DeNofrio D, et al. Eptifibatide for the treatment of HeartMate II left ventricular assist device thrombosis. Circulation Heart failure. 2012;5(4):e68–70.

    Article  CAS  PubMed  Google Scholar 

  20. Badiye A, Hernandez GA, Chaparro S. Argatroban as novel therapy for suspected thrombosis in patients with continuous-flow left ventricle assist device and hemolysis. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2014;60(3):361–5.

    Article  Google Scholar 

  21. Sylvia LM, Ordway L, Pham DT, DeNofrio D, Kiernan M. Bivalirudin for treatment of LVAD thrombosis: a case series. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2014;60(6):744–7.

    Article  Google Scholar 

  22. Kamouh A, John R, Eckman P. Successful treatment of early thrombosis of HeartWare left ventricular assist device with intraventricular thrombolytics. Ann Thorac Surg. 2012;94(1):281–3.

    Article  PubMed  Google Scholar 

  23. Schlendorf K, Patel CB, Gehrig T, Kiefer TL, Felker GM, Hernandez AF, et al. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J Card Fail. 2014;20(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  24. Tellor BR, Smith JR, Prasad SM, Joseph SM, Silvestry SC. The use of eptifibatide for suspected pump thrombus or thrombosis in patients with left ventricular assist devices. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(1):94–101.

    Article  Google Scholar 

  25. Bellumkonda L, Subrahmanyan L, Jacoby D, Bonde P. Left ventricular assist device pump thrombosis: is there a role for glycoprotein IIb/IIIa inhibitors? ASAIO journal (American Society for Artificial Internal Organs : 1992). 2014;60(1):134–6.

    Article  CAS  Google Scholar 

  26. Stulak JM, Dunlay SM, Sharma S, Haglund NA, Davis MB, Cowger J, et al. Treatment of device thrombus in the HeartWare HVAD: success and outcomes depend significantly on the initial treatment strategy. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1535–41.

    Article  Google Scholar 

  27. Moazami N, Milano CA, John R, Sun B, Adamson RM, Pagani FD, et al. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann Thorac Surg. 2013;95(2):500–5.

    Article  PubMed  Google Scholar 

  28. Jorde UP, Aaronson KD, Najjar SS, Pagani FD, Hayward C, Zimpfer D, et al. Identification and management of pump thrombus in the HeartWare left ventricular assist device system: a novel approach using log file analysis. JACC Heart failure. 2015;3(11):849–56.

    Article  PubMed  Google Scholar 

  29. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  PubMed  Google Scholar 

  30. • Acharya D, L-R R, Morgan CJ, Sands KA, Pamboukian SV, Rajapreyar I, Holman WL, Kirklin JK, Tallaj JA. INTERMACS analysis of stroke during support with continuous-flow left ventricular assist devices: risk factors and outcomes. JACC Heart Fail. 2017. Oct 5 (10) 703–711. This is the most recent publication on the characteristics of stroke in CF-LVAD patients obtained from the INTERMACS.

  31. Harvey L, Holley C, Roy SS, Eckman P, Cogswell R, Liao K, et al. Stroke after left ventricular assist device implantation: outcomes in the continuous-flow era. Ann Thorac Surg. 2015;100(2):535–41.

    Article  PubMed  Google Scholar 

  32. James KK. Quarterly statistical report (Q3) of the Interagency Registry for Mechanically Assisted Circulatory Support. 2016. http://www.uab.edu/medicine/intermacs/images/Federal_Quarterly_Report/Federal_Partners_Report_2016_Q3.pdf

  33. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.

    Article  PubMed  Google Scholar 

  34. Kim JH, Singh R, Pagani FD, Desai SS, Haglund NA, Dunlay SM, et al. Ventricular assist device therapy in older patients with heart failure: characteristics and outcomes. J Card Fail. 2016;22(12):981–7.

    Article  PubMed  Google Scholar 

  35. Boyle AJ, Jorde UP, Sun B, Park SJ, Milano CA, Frazier OH, et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol. 2014;63(9):880–8.

    Article  PubMed  Google Scholar 

  36. Meeteren JV, Maltais S, Dunlay SM, Haglund NA, Beth Davis M, Cowger J, et al. A multi-institutional outcome analysis of patients undergoing left ventricular assist device implantation stratified by sex and race. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2017;36(1):64–70.

    Article  Google Scholar 

  37. Musunuru K, Hickey KT, Al-Khatib SM, Delles C, Fornage M, Fox CS, et al. Basic concepts and potential applications of genetics and genomics for cardiovascular and stroke clinicians: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2015;8(1):216–42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fried J, Levin AP, Mody KM, Garan AR, Yuzefpolsakaya M, Takayama H, et al. Prior hematologic conditions carry a high morbidity and mortality in patients supported with continuous-flow left ventricular assist devices. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(11):1119–25.

    Article  Google Scholar 

  39. Alvarez P, Cordero-Reyes AM, Uribe C, De Hoyos P, Martinez D, Bhimaraj A, et al. Acquired and hereditary hypercoagulable states in patients with continuous flow left ventricular assist devices: prevalence and thrombotic complications. J Card Fail. 2016;22(7):501–11.

    Article  PubMed  Google Scholar 

  40. Bennett MK, Roberts CA, Dordunoo D, Shah A, Russell SD. Ideal methodology to assess systemic blood pressure in patients with continuous-flow left ventricular assist devices. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2010;29(5):593–4.

    Article  Google Scholar 

  41. Lampert BC, Eckert C, Weaver S, Scanlon A, Lockard K, Allen C, et al. Blood pressure control in continuous flow left ventricular assist devices: efficacy and impact on adverse events. Ann Thorac Surg. 2014;97(1):139–46.

    Article  PubMed  Google Scholar 

  42. Nassif ME, Tibrewala A, Raymer DS, Andruska A, Novak E, Vader JM, et al. Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(4):503–8.

    Article  Google Scholar 

  43. Frontera JA, Starling R, Cho SM, Nowacki AS, Uchino K, Hussain MS, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant. 2017;(6):673–683.

  44. Vest AR, Mistak SM, Hachamovitch R, Mountis MM, Moazami N, Young JB. Outcomes for patients with diabetes after continuous-flow left ventricular assist device implantation. J Card Fail. 2016;22(10):789–96.

    Article  PubMed  Google Scholar 

  45. Willey JZ, Gavalas MV, Trinh PN, Yuzefpolskaya M, Reshad Garan A, Levin AP, et al. Outcomes after stroke complicating left ventricular assist device. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2016;35(8):1003–9.

    Article  Google Scholar 

  46. Xuereb L, Go PH, Kaur B, Akrawe S, Nemeh HW, Borgi J, et al. Impact of preoperative atrial fibrillation on postoperative thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg. 2016;102(5):1543–9.

    Article  PubMed  Google Scholar 

  47. Enriquez AD, Calenda B, Gandhi PU, Nair AP, Anyanwu AC, Pinney SP. Clinical impact of atrial fibrillation in patients with the HeartMate II left ventricular assist device. J Am Coll Cardiol. 2014;64(18):1883–90.

    Article  PubMed  Google Scholar 

  48. Stulak JM, Deo S, Schirger J, Aaronson KD, Park SJ, Joyce LD, et al. Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg. 2013;96(6):2161–7.

    Article  PubMed  Google Scholar 

  49. Go PH, Nemeh HW, Borgi J, Paone G, Morgan JA. Effect of body mass index on outcomes in left ventricular assist device recipients. J Card Surg. 2016;31(4):242–7.

    Article  PubMed  Google Scholar 

  50. Komoda T, Drews T, Hetzer R, Lehmkuhl HB. Lower body surface area is highly related to mortality due to stroke or systemic bleeding in patients receiving an axial flow blood pump as a left ventricular assist device. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2013;43(5):1036–42.

    Article  Google Scholar 

  51. Lee S, Katz JN, Jorde UP, Moazami N, John R, Sundareswaran KS, et al. Outcomes of adult patients with small body size supported with a continuous-flow left ventricular assist device. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2016;62(6):646–51.

    Article  PubMed Central  Google Scholar 

  52. Zittermann A, Morshuis M, Kuhn J, Pilz S, Ernst JB, Oezpeker C, et al. Vitamin D metabolites and fibroblast growth factor-23 in patients with left ventricular assist device implants: association with stroke and mortality risk. Eur J Nutr. 2016;55(1):305–13.

    Article  CAS  PubMed  Google Scholar 

  53. Lazar RM, Shapiro PA, Jaski BE, Parides MK, Bourge RC, Watson JT, et al. Neurological events during long-term mechanical circulatory support for heart failure: the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) experience. Circulation. 2004;109(20):2423–7.

    Article  PubMed  Google Scholar 

  54. Slaughter MS, Pagani FD, McGee EC, Birks EJ, Cotts WG, Gregoric I, et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2013;32(7):675–83.

    Article  Google Scholar 

  55. Stulak JM, Davis ME, Haglund N, Dunlay S, Cowger J, Shah P, et al. Adverse events in contemporary continuous-flow left ventricular assist devices: a multi-institutional comparison shows significant differences. J Thorac Cardiovasc Surg. 2016;151(1):177–89.

    Article  PubMed  Google Scholar 

  56. Coffin ST, Haglund NA, Davis ME, Xu M, Dunlay SM, Cowger JA, et al. Adverse neurologic events in patients bridged with long-term mechanical circulatory support: a device-specific comparative analysis. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1578–85.

    Article  Google Scholar 

  57. Morris AA, Pekarek A, Wittersheim K, Cole RT, Gupta D, Nguyen D, et al. Gender differences in the risk of stroke during support with continuous-flow left ventricular assist device. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2015;34(12):1570–7.

    Article  Google Scholar 

  58. Lalonde SD, Alba AC, Rigobon A, Ross HJ, Delgado DH, Billia F, et al. Clinical differences between continuous flow ventricular assist devices: a comparison between HeartMate II and HeartWare HVAD. J Card Surg. 2013;28(5):604–10.

    Article  PubMed  Google Scholar 

  59. Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376(5):451–60.

    Article  PubMed  Google Scholar 

  60. Zhang Y, Gao B, Yu C. The hemodynamic effects of the LVAD outflow cannula location on the thrombi distribution in the aorta: a primary numerical study. Comput Methods Prog Biomed. 2016;133:217–27.

    Article  Google Scholar 

  61. Bhat S, Mathews J, Balakrishnan KR, Krishna KR. Effect of outflow graft size on flow in the aortic arch and cerebral blood flow in continuous flow pumps: possible relevance to strokes. ASAIO 2017;63(2):144–149.

  62. Osorio AF, Osorio R, Ceballos A, Tran R, Clark W, Divo EA, et al. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk. Computer methods in biomechanics and biomedical engineering. 2013;16(6):622–38.

    Article  PubMed  Google Scholar 

  63. Trachtenberg BH, Cordero-Reyes AM, Aldeiri M, Alvarez P, Bhimaraj A, Ashrith G, et al. Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents. J Card Fail. 2015;21(2):119–25.

    Article  PubMed  Google Scholar 

  64. Aggarwal A, Gupta A, Kumar S, Baumblatt JA, Pauwaa S, Gallagher C, et al. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO journal (American Society for Artificial Internal Organs : 1992). 2012;58(5):509–13.

    Article  CAS  Google Scholar 

  65. Jennings DL, Jacob M, Chopra A, Nemerovski CW, Morgan JA, Lanfear DE. Safety of anticoagulation reversal in patients supported with continuous-flow left ventricular assist devices. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2014;60(4):381–4.

    Article  CAS  Google Scholar 

  66. Wong JK, Chen PC, Falvey J, Melvin AL, Lidder AK, Lowenstein LM, et al. Anticoagulation reversal strategies for left ventricular assist device patients presenting with acute intracranial hemorrhage. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2016;62(5):552–7.

    Article  CAS  Google Scholar 

  67. Bradford CD, Stahovich MJ, Dembitsky WP, Adamson RM, Engelbert JJ, Perreiter AS. Safety of prothombin complex concentrate to control excess bleeding during continuous flow LVAD insertion. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2015;61(5):509–13.

    Article  CAS  Google Scholar 

  68. Al-Mufti F, Bauerschmidt A, Claassen J, Meyers PM, Colombo PC, Willey JZ. Neuroendovascular interventions for acute ischemic strokes in patients supported with left ventricular assist devices: a single-center case series and review of the literature. World neurosurgery. 2016;88:199–204.

    Article  PubMed  Google Scholar 

  69. Morgan JA, Paone G, Nemeh HW, Henry SE, Patel R, Vavra J, et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2012;31(7):715–8.

    Article  Google Scholar 

  70. Holley CT, Harvey L, Roy SS, Cogswell R, Eckman P, Liao K, et al. Gastrointestinal bleeding during continuous-flow left ventricular assist device support is associated with lower rates of cardiac transplantation. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2015;61(6):635–9.

    Article  Google Scholar 

  71. Joy PS, Kumar G, Guddati AK, Bhama JK, Cadaret LM. Risk factors and outcomes of gastrointestinal bleeding in left ventricular assist device recipients. Am J Cardiol. 2016;117(2):240–4.

    Article  PubMed  Google Scholar 

  72. Sparrow CT, Nassif ME, Raymer DS, Novak E, LaRue SJ, Schilling JD. Pre-operative right ventricular dysfunction is associated with gastrointestinal bleeding in patients supported with continuous-flow left ventricular assist devices. JACC Heart failure. 2015;3(12):956–64.

    Article  PubMed  Google Scholar 

  73. Wever-Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM, et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circulation Heart failure. 2013;6(3):517–26.

    Article  CAS  PubMed  Google Scholar 

  74. Jabbar HR, Abbas A, Ahmed M, Klodell CT Jr, Chang M, Dai Y, et al. The incidence, predictors and outcomes of gastrointestinal bleeding in patients with left ventricular assist device (LVAD). Dig Dis Sci. 2015;60(12):3697–706.

    Article  PubMed  Google Scholar 

  75. Saito S, Yamazaki K, Nishinaka T, Ichihara Y, Ono M, Kyo S, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: a Japanese multicenter study using J-MACS. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(6):599–608.

    Article  Google Scholar 

  76. Houston BA, Schneider AL, Vaishnav J, Cromwell DM, Miller PE, Faridi KF, et al. Angiotensin II antagonism is associated with reduced risk for gastrointestinal bleeding caused by arteriovenous malformations in patients with left ventricular assist devices. J Heart Lung Transplant. 2017;(4):380–385.

  77. Hanson BJ, Koene RJ, Roy SS, Eckman PM, John R, Chaudhary NA, et al. Safety and outcomes of capsule endoscopy in patients with left ventricular assist device: a single-center retrospective case series. J Cardiovasc Transl Res. 2016;9(4):402–4.

    Article  PubMed  Google Scholar 

  78. Amornsawadwattana S, Nassif M, Raymer D, LaRue S, Chen CH. Video capsule endoscopy in left ventricular assist device recipients with obscure gastrointestinal bleeding. World J Gastroenterol. 2016;22(18):4559–66.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cochrane J, Jackson C, Schlepp G, Strong R. Gastrointestinal angiodysplasia is associated with significant gastrointestinal bleeding in patients with continuous left ventricular assist devices. Endoscopy international open. 2016;4(3):E371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dang G, Grayburn R, Lamb G, Umpierrez De Regureo A, Gaglianello N. Octreotide for the management of gastrointestinal bleeding in a patient with a heartware left ventricular assist device. Case Rep Cardiol. 2014; 2014:826453. https://doi.org/10.1155/2014/826453

  81. Rennyson S, Shah K, Tang D, Kasirajan V, Pedram, S, Cahoon W, Malhora, R. Octreotide for left ventricular assist device-related gastrointestinal hemorrhage: Can we stop the bleeding? ASAIO J. 2013;59(4):450–451.

  82. Loyaga-Rendon RY, Hashim T, Tallaj JA, Acharya D, Holman W, Kirklin J, et al. Octreotide in the management of recurrent gastrointestinal bleed in patients supported by continuous flow left ventricular assist devices. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2015;61(1):107–9.

    Article  CAS  Google Scholar 

  83. Malhotra R, Shah KB, Chawla R, Pedram S, Smallfield MC, Profay AG et al. Tolerability and biological effects of long-acting octreotide in patients with continuous flow left ventricular assist devices. ASAIO. 2017;63(3):367–370.

  84. Brown C, Subramanian V, Wilcox CM, Peter S. Somatostatin analogues in the treatment of recurrent bleeding from gastrointestinal vascular malformations: an overview and systematic review of prospective observational studies. Dig Dis Sci. 2010;55(8):2129–34.

    Article  CAS  PubMed  Google Scholar 

  85. Malhotra R, Shah KB, Chawla R, Pedram S, Smallfield MC, Priday AG, et al. Tolerability and biological effects of long acting octreotide in patients with continuous flow left ventricular assist devices. ASAIO J (American Society for Artificial Internal Organs: 1992). 2016.

  86. Schettle SD, Pruthi RK, Pereira NL. Continuous-flow left ventricular assist devices and gastrointestinal bleeding: potential role of danazol. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(5):549–50.

    Article  Google Scholar 

  87. Szilagyi A, Ghali MP. Pharmacological therapy of vascular malformations of the gastrointestinal tract. Canadian journal of gastroenterology = Journal canadien de gastroenterologie 2006;20(3):171–178.

  88. Kushnir VM, Sharma S, Ewald GA, Seccombe J, Novak E, Wang IW, et al. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endosc. 2012;75(5):973–9.

    Article  PubMed  Google Scholar 

  89. Bauditz J. Effective treatment of gastrointestinal bleeding with thalidomide—chances and limitations. World J Gastroenterol. 2016;22(11):3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ge ZZ, Chen HM, Gao YJ, Liu WZ, Xu CH, Tan HH, et al. Efficacy of thalidomide for refractory gastrointestinal bleeding from vascular malformation. Gastroenterology. 2011;141(5):1629–37.e1-4.

    Article  CAS  PubMed  Google Scholar 

  91. Tan HH, Ge ZZ, Chen HM, Gao YJ. Successful treatment with thalidomide for a patient with recurrent gastrointestinal bleeding due to angiodysplasia diagnosed by capsule endoscopy. J Dig Dis. 2013;14(3):153–5.

    Article  PubMed  Google Scholar 

  92. Chan LL, Lim CP, Lim CH, Tan TE, Sim D, Sivathasan C. Novel use of thalidomide in recurrent gastrointestinal tract bleeding in patients with left ventricular assist devices: a case series. Heart Lung Circ. 2016;26(10):1101–1104.

  93. Ray R, Kale P, Ha R, Banerjee D. Treatment of left ventricular assist device-associated arteriovenous malformation with thalidomide. ASAIO J. 2014;60(4):482–483.

  94. Hollis IB, Chen SL, Chang PP, Katz JN. Inhaled desmopressin for refractory gastrointestinal bleeding in a patient with a HeartMate II left ventricular assist device. ASAIO journal (American Society for Artificial Internal Organs: 1992). 2017;63(4):e47–e9.x

  95. Bartoli CR, Kang J, Restle DJ, Zhang DM, Shabahang C, Acker MA, et al. Inhibition of ADAMTS-13 by doxycycline reduces von Willebrand factor degradation during supraphysiological shear stress: therapeutic implications for left ventricular assist device-associated bleeding. JACC Heart failure. 2015;3(11):860–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Y. Loyaga-Rendon.

Ethics declarations

Conflict of Interest

Renzo Y. Loyaga-Rendon, Melina Jani, David Fermin, Jennifer K. McDermott, Diane Vancamp, and Sangjin Lee each declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loyaga-Rendon, R.Y., Jani, M., Fermin, D. et al. Prevention and Treatment of Thrombotic and Hemorrhagic Complications in Patients Supported by Continuous-Flow Left Ventricular Assist Devices. Curr Heart Fail Rep 14, 465–477 (2017). https://doi.org/10.1007/s11897-017-0367-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0367-3

Keywords

Navigation