Skip to main content

Advertisement

Log in

The Emerging Role of Galectin-3 and ST2 in Heart Failure: Practical Considerations and Pitfalls Using Novel Biomarkers

  • Biomarkers of Heart Failure (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a leading cause of morbidity and mortality worldwide and, despite recent advances in therapy HF hospitalization rates remains unacceptably high. Prompt identification and optimal management of HF can affect long-term outcome. A valuable tool with diagnostic, prognostic, and treatment-guiding properties in this respect will be very useful, as exemplified by natriuretic peptides. However, natriuretic peptide levels show biological variation and are dependent on age, renal function, and body mass index. Recent advances in the field of molecular biology and HF pathophysiology have led to the discovery of other novel biomarkers that may have advantages. Among others, Galectin-3 (GAL3) and sST2 are 2 promising biomarkers that have been recently developed and can be used alone or in combination with natriuretic peptides in clinical practice. In the current paper, we review the existing data regarding GAL3 and sST2 in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sherwi N, Merali S, Wong K. Personalizing biomarker strategies in heart failure with galectin-3. Future Cardiol. 2012;8(6):885–94. doi:10.2217/fca.12.65.

    Article  PubMed  CAS  Google Scholar 

  2. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6. doi:10.1161/CIRCULATIONAHA.108.191259.

    Article  PubMed  Google Scholar 

  3. Giamouzis G, Kalogeropoulos A, Georgiopoulou V, Laskar S, Smith AL, Dunbar S, et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J Cardiac Failure. 2011;17(1):54–75. doi:10.1016/j.cardfail.2010.08.010.

    Article  Google Scholar 

  4. Wu AH, Wians F, Jaffe A. Biological variation of galectin-3 and soluble ST2 for chronic heart failure: implication on interpretation of test results. Am Heart J. 2013;165(6):995–9. doi:10.1016/j.ahj.2013.02.029.

    Article  PubMed  CAS  Google Scholar 

  5. Rehman SU, Mueller T, Januzzi Jr JL. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52(18):1458–65. doi:10.1016/j.jacc.2008.07.042.

    Article  PubMed  CAS  Google Scholar 

  6. de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Failure Rep. 2010;7(1):1–8. doi:10.1007/s11897-010-0004-x.

    Article  Google Scholar 

  7. Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S. Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin. J Biol Chem. 1991;266(28):18731–6.

    PubMed  CAS  Google Scholar 

  8. Sato S, Hughes RC. Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem. 1992;267(10):6983–90.

    PubMed  CAS  Google Scholar 

  9. Kim H, Lee J, Hyun JW, Park JW, Joo HG, Shin T. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int. 2007;31(7):655–62. doi:10.1016/j.cellbi.2006.11.036.

    Article  PubMed  CAS  Google Scholar 

  10. Hattasch R, Spethmann S, de Boer RA, Ruifrok WP, Schattke S, Wagner M, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol. 2013. doi:10.1177/2047487313492069.

    PubMed  Google Scholar 

  11. • Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8. doi:10.1161/01.CIR.0000147181.65298.4D. Experimental evidence of adverse pathophysiological effects of galectin-3 on the heart.

    Article  PubMed  CAS  Google Scholar 

  12. Thandavarayan RA, Watanabe K, Ma M, Veeraveedu PT, Gurusamy N, Palaniyandi SS, et al. 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy. Biochem Pharmacol. 2008;75(9):1797–806. doi:10.1016/j.bcp.2008.02.003.

    Article  PubMed  CAS  Google Scholar 

  13. •• Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404–12. doi:10.1152/ajpheart.00747.2008. This article supports the feasibility of anti-galectin therapy by demonstrating that it can prevent maldaptive remodelling.

    Article  PubMed  CAS  Google Scholar 

  14. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747–62. doi:10.1016/j.jacc.2009.05.015.

    Article  PubMed  CAS  Google Scholar 

  15. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103(13):5060–5. doi:10.1073/pnas.0511167103.

    Article  PubMed  CAS  Google Scholar 

  16. Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K, et al. Role of galectin-3 in human pulmonary fibrosis. Allergol Int: Off J Jpn Soc Allergol. 2007;56(1):57–65. doi:10.2332/allergolint.O-06-449.

    Article  CAS  Google Scholar 

  17. Wang L, Friess H, Zhu Z, Frigeri L, Zimmermann A, Korc M, et al. Galectin-1 and galectin-3 in chronic pancreatitis. Laboratory investigation. J Tech Methods Pathol. 2000;80(8):1233–41.

    CAS  Google Scholar 

  18. • Lin YH, Lin LY, Wu YW, Chien KL, Lee CM, Hsu RB, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta; Int J Clin Chem. 2009;409(1–2):96–9. doi:10.1016/j.cca.2009.09.001. Evidence of significant relation of galectin-3 with procollagen III N-terminal peptide.

    Article  CAS  Google Scholar 

  19. Rubinstein N, Ilarregui JM, Toscano MA, Rabinovich GA. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens. 2004;64(1):1–12. doi:10.1111/j.0001-2815.2004.00278.x.

    Article  PubMed  CAS  Google Scholar 

  20. Reifenberg K, Lehr HA, Torzewski M, Steige G, Wiese E, Kupper I, et al. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol. 2007;171(2):463–72. doi:10.2353/ajpath.2007.060906.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001;280(4):1183–8. doi:10.1006/bbrc.2001.4256.

    Article  PubMed  CAS  Google Scholar 

  22. Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol. 1998;152(5):1199–208.

    PubMed  CAS  Google Scholar 

  23. Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, Badings E, Lipsic E, van Wijngaarden J, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol: Off J German Cardiac Soc. 2013;102(2):103–10. doi:10.1007/s00392-012-0500-y.

    Article  CAS  Google Scholar 

  24. Kortekaas KA, Hoogslag GE, de Boer RA, Dokter MM, Versteegh MI, Braun J, et al. Galectin-3 and left ventricular reverse remodelling after surgical mitral valve repair. Eur J Heart Failure. 2013. doi:10.1093/eurjhf/hft056.

    Google Scholar 

  25. Tang WH, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108(3):385–90. doi:10.1016/j.amjcard.2011.03.056.

    Article  PubMed  CAS  Google Scholar 

  26. Fermann GJ, Lindsell CJ, Storrow AB, Hart K, Sperling M, Roll S, et al. Galectin 3 complements BNP in risk stratification in acute heart failure. Biomarkers: Biochem Indic Expo, Response, Susceptibility Chem. 2012;17(8):706–13. doi:10.3109/1354750X.2012.719037.

    CAS  Google Scholar 

  27. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Failure. 2012;5(1):72–8. doi:10.1161/CIRCHEARTFAILURE.111.963637.

    Article  CAS  Google Scholar 

  28. Gopal DM, Kommineni M, Ayalon N, Koelbl C, Ayalon R, Biolo A, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc. 2012;1(5):e000760. doi:10.1161/JAHA.112.000760.

    Article  PubMed  Google Scholar 

  29. Weir RA, Petrie CJ, Murphy CA, Clements S, Steedman T, Miller AM, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Failure. 2013;6(3):492–8. doi:10.1161/CIRCHEARTFAILURE.112.000146.

    Article  CAS  Google Scholar 

  30. • van Kimmenade RR, Januzzi Jr JL, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48(6):1217–24. doi:10.1016/j.jacc.2006.03.061. This article demonstrates the diagnostic capability of galectin-3 in acute heart failure patients.

    Article  PubMed  Google Scholar 

  31. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Failure. 2010;12(8):826–32. doi:10.1093/eurjhf/hfq091.

    Article  CAS  Google Scholar 

  32. • van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Failure. 2013;6(2):219–26. doi:10.1161/CIRCHEARTFAILURE.112.000129. This article confirms the significant prognostic value of galectin-3 in both chronic and acute decompensated heart failure patients.

    Article  Google Scholar 

  33. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Failure. 2013. doi:10.1093/eurjhf/hft075.

    Google Scholar 

  34. • Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Failure. 2013;15(5):511–8. doi:10.1093/eurjhf/hfs205. A large study confirming the association of increased galectin-3 with severe HF and renal dysfunction, as well as differential effects of valsartan on outcomes in relation to galectin-3 levels.

    Article  CAS  Google Scholar 

  35. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol: Off J German Cardiac Soc. 2010;99(5):323–8. doi:10.1007/s00392-010-0125-y.

    Article  CAS  Google Scholar 

  36. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8. doi:10.3109/07853890.2010.538080.

    Article  PubMed  Google Scholar 

  37. Lok DJ, Klip IT, Lok SI, de la Bruggink-Andre de la Porte PW, Badings E, van Wijngaarden J, et al. Incremental prognostic power of novel biomarkers (Growth-Differentiation Factor-15, High-Sensitivity C-Reactive Protein, Galectin-3, and High-Sensitivity Troponin-T) in patients with advanced chronic heart failure. Am J Cardiol. 2013. doi:10.1016/j.amjcard.2013.05.013.

    PubMed  Google Scholar 

  38. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant: Official Publ Inter Soc Heart Transplant. 2008;27(6):589–96. doi:10.1016/j.healun.2008.02.018.

    Article  Google Scholar 

  39. Erkilet G, Ozpeker C, Bothig D, Kramer F, Rofe D, Bohms B, et al. The biomarker plasma galectin-3 in advanced heart failure and survival with mechanical circulatory support devices. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2013;32(2):221–30. doi:10.1016/j.healun.2012.11.011.

    Article  Google Scholar 

  40. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56. doi:10.1016/j.jacc.2012.04.053.

    Article  PubMed  CAS  Google Scholar 

  41. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population. J Int Med. 2012;272(1):55–64. doi:10.1111/j.1365-2796.2011.02476.x.

    Article  Google Scholar 

  42. Grandin EW, Jarolim P, Murphy SA, Ritterova L, Cannon CP, Braunwald E, et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem. 2012;58(1):267–73. doi:10.1373/clinchem.2011.174359.

    Article  PubMed  CAS  Google Scholar 

  43. Tsai TH, Sung PH, Chang LT, Sun CK, Yeh KH, Chung SY, et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. J Atheroscler Thromb. 2012;19(12):1073–82.

    Article  PubMed  CAS  Google Scholar 

  44. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33(18):2290–6. doi:10.1093/eurheartj/ehs077.

    Article  PubMed  CAS  Google Scholar 

  45. Lopez-Andres N, Rossignol P, Iraqi W, Fay R, Nuee J, Ghio S, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Failure. 2012;14(1):74–81. doi:10.1093/eurjhf/hfr151.

    Article  CAS  Google Scholar 

  46. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Failure. 2013;6(1):107–17. doi:10.1161/CIRCHEARTFAILURE.112.971168.

    Article  CAS  Google Scholar 

  47. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler, Thromb, Vascr Biol. 2013;33(1):67–75. doi:10.1161/ATVBAHA.112.300569.

    Article  CAS  Google Scholar 

  48. Bichara M, Attmane-Elakeb A, Brown D, Essig M, Karim Z, Muffat-Joly M, et al. Exploring the role of galectin 3 in kidney function: a genetic approach. Glycobiology. 2006;16(1):36–45. doi:10.1093/glycob/cwj035.

    Article  PubMed  CAS  Google Scholar 

  49. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. New Eng J Med. 1999;341(10):709–17. doi:10.1056/NEJM199909023411001.

    Article  PubMed  CAS  Google Scholar 

  50. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New Eng J Med. 2003;348(14):1309–21. doi:10.1056/NEJMoa030207.

    Article  PubMed  CAS  Google Scholar 

  51. Iwahana H, Yanagisawa K, Ito-Kosaka A, Kuroiwa K, Tago K, Komatsu N, et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur J Biochem/FEBS. 1999;264(2):397–406.

    Article  CAS  Google Scholar 

  52. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7(10):827–40. doi:10.1038/nrd2660.

    Article  PubMed  CAS  Google Scholar 

  53. Januzzi Jr JL. ST2 As a cardiovascular risk biomarker: from the bench to the bedside. J Cardiovasc Transl Res. 2013;6(4):493–500. doi:10.1007/s12265-013-9459-y.

    Article  PubMed  Google Scholar 

  54. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90. doi:10.1016/j.immuni.2005.09.015.

    Article  PubMed  CAS  Google Scholar 

  55. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.

    Article  PubMed  CAS  Google Scholar 

  56. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig. 2007;117(6):1538–49. doi:10.1172/JCI30634.

    Article  PubMed  CAS  Google Scholar 

  57. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Failure. 2009;2(6):684–91. doi:10.1161/CIRCHEARTFAILURE.109.873240.

    Article  CAS  Google Scholar 

  58. Palmer G, Lipsky BP, Smithgall MD, Meininger D, Siu S, Talabot-Ayer D, et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine. 2008;42(3):358–64. doi:10.1016/j.cyto.2008.03.008.

    Article  PubMed  CAS  Google Scholar 

  59. Fagundes CT, Amaral FA, Souza AL, Vieira AT, Xu D, Liew FY, et al. ST2, an IL-1R family member, attenuates inflammation and lethality after intestinal ischemia and reperfusion. J Leukoc Biol. 2007;81(2):492–9. doi:10.1189/jlb.0606422.

    Article  PubMed  CAS  Google Scholar 

  60. Abston ED, Barin JG, Cihakova D, Bucek A, Coronado MJ, Brandt JE, et al. IL-33 independently induces eosinophilic pericarditis and cardiac dilation: ST2 improves cardiac function. Circ Heart Failure. 2012;5(3):366–75. doi:10.1161/CIRCHEARTFAILURE.111.963769.

    Article  CAS  Google Scholar 

  61. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52(25):2166–74. doi:10.1016/j.jacc.2008.09.027.

    Article  PubMed  CAS  Google Scholar 

  62. Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S, et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol. 2013;60:16–26. doi:10.1016/j.yjmcc.2013.03.020.

    Article  PubMed  CAS  Google Scholar 

  63. Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M, Hantusch B, et al. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes (Lond). 2013;37(5):658–65. doi:10.1038/ijo.2012.118.

    Article  CAS  Google Scholar 

  64. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58(12):1673–81. doi:10.1373/clinchem.2012.192153.

    Article  PubMed  CAS  Google Scholar 

  65. • Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Failure. 2009;2(4):311–9. doi:10.1161/CIRCHEARTFAILURE.108.833707. This article reveals that sST2 concentrations are associated with left ventricular structural abnormalities, decompensation and long-term in acute dyspneic patients.

    Article  CAS  Google Scholar 

  66. Weinberg EO. ST2 protein in heart disease: from discovery to mechanisms and prognostic value. Biomarkers Med. 2009;3(5):495–511. doi:10.2217/bmm.09.56.

    Article  CAS  Google Scholar 

  67. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–50. doi:10.1016/j.jacc.2009.08.047.

    Article  PubMed  CAS  Google Scholar 

  68. Willems S, Sels JW, Flier S, Versteeg D, Buhre WF, de Kleijn DP, et al. Temporal changes of soluble ST2 after cardiovascular interventions. Eur J Clin Investig. 2013;43(2):113–20. doi:10.1111/eci.12022.

    Article  CAS  Google Scholar 

  69. Januzzi Jr JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–13. doi:10.1016/j.jacc.2007.05.014.

    Article  PubMed  CAS  Google Scholar 

  70. Aldous SJ, Richards AM, Troughton R, Than M. ST2 has diagnostic and prognostic utility for all-cause mortality and heart failure in patients presenting to the emergency department with chest pain. J Cardiac Failure. 2012;18(4):304–10. doi:10.1016/j.cardfail.2012.01.008.

    Article  CAS  Google Scholar 

  71. Dieplinger B, Januzzi Jr JL, Steinmair M, Gabriel C, Poelz W, Haltmayer M, et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma--the Presage ST2 assay. Clin Chim Acta; Int J Clin Chem. 2009;409(1–2):33–40. doi:10.1016/j.cca.2009.08.010.

    Article  CAS  Google Scholar 

  72. Wang YC, Yu CC, Chiu FC, Tsai CT, Lai LP, Hwang JJ, et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Cardiac Failure. 2013;19(3):163–8. doi:10.1016/j.cardfail.2013.01.010.

    Article  CAS  Google Scholar 

  73. Martinez-Rumayor A, Camargo CA, Green SM, Baggish AL, O'Donoghue M, Januzzi JL. Soluble ST2 plasma concentrations predict 1-year mortality in acutely dyspneic emergency department patients with pulmonary disease. Am J Clin Pathol. 2008;130(4):578–84. doi:10.1309/WMG2BFRC97MKKQKP.

    Article  PubMed  Google Scholar 

  74. Manzano-Fernandez S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107(2):259–67. doi:10.1016/j.amjcard.2010.09.011.

    Article  PubMed  CAS  Google Scholar 

  75. • Bayes-Genis A, de Antonio M, Galan A, Sanz H, Urrutia A, Cabanes R, et al. Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Failure. 2012;14(1):32–8. doi:10.1093/eurjhf/hfr156. The additive prognostic value of combined use of ST2 and NTproBNP for risk stratification for death in heart failure patients.

    Article  CAS  Google Scholar 

  76. Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem. 2008;54(4):752–6. doi:10.1373/clinchem.2007.096560.

    Article  PubMed  CAS  Google Scholar 

  77. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, Casas T, Garrido IP, Bonaque JC, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Failure. 2011;13(7):718–25. doi:10.1093/eurjhf/hfr047.

    Article  CAS  Google Scholar 

  78. Zilinski JL, Shah RV, Gaggin HK, Gantzer ML, Wang TJ, Januzzi Jr JL. Measurement of multiple biomarkers in advanced stage heart failure patients treated with pulmonary artery catheter guided therapy. Crit Care. 2012;16(4):R135. doi:10.1186/cc11440.

    Article  PubMed  Google Scholar 

  79. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.

    Article  PubMed  Google Scholar 

  80. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Cardiac Failure. 2008;14(9):732–8. doi:10.1016/j.cardfail.2008.06.415.

    Article  Google Scholar 

  81. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Failure. 2011;4(2):180–7. doi:10.1161/CIRCHEARTFAILURE.110.958223.

    Article  Google Scholar 

  82. Giamouzis G, Kalogeropoulos AP, Georgiopoulou VV, Agha SA, Rashad MA, Laskar SR, et al. Incremental value of renal function in risk prediction with the Seattle Heart Failure Model. Am Heart J. 2009;157(2):299–305. doi:10.1016/j.ahj.2008.10.007.

    Article  PubMed  Google Scholar 

  83. Agha SA, Kalogeropoulos AP, Shih J, Georgiopoulou VV, Giamouzis G, Anarado P, et al. Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers. J Cardiac Failure. 2009;15(7):586–92. doi:10.1016/j.cardfail.2009.03.002.

    Article  Google Scholar 

  84. • Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Failure. 2012;14(3):268–77. doi:10.1093/eurjhf/hfs006. This article underlines the prognostic importance of ST2 measurement in patients ≥60 years of age with ischemic heart failure.

    Article  CAS  Google Scholar 

  85. Lupon J, de Antonio M, Galan A, Vila J, Zamora E, Urrutia A, et al. Combined use of the novel biomarkers high-sensitivity troponin T and ST2 for heart failure risk stratification vs conventional assessment. Mayo Clin Proc Mayo Clin. 2013;88(3):234–43. doi:10.1016/j.mayocp.2012.09.016.

    Article  CAS  Google Scholar 

  86. Pascual-Figal DA, Ordonez-Llanos J, Tornel PL, Vazquez R, Puig T, Valdes M, et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol. 2009;54(23):2174–9. doi:10.1016/j.jacc.2009.07.041.

    Article  PubMed  CAS  Google Scholar 

  87. Januzzi JL, Horne BD, Moore SA, Galenko O, Snow GL, Brunisholz KD, et al. Interleukin receptor family member ST2 concentrations in patients following heart transplantation. Biomarkers: Biochem Indic Expo, Response, Susceptibility Chem. 2013;18(3):250–6. doi:10.3109/1354750X.2013.773081.

    CAS  Google Scholar 

  88. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012;126(13):1596–604. doi:10.1161/CIRCULATIONAHA.112.129437.

    Article  PubMed  CAS  Google Scholar 

  89. Chen LQ, de Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the Dallas Heart Study. Clin Chem. 2013;59(3):536–46. doi:10.1373/clinchem.2012.191106.

    Article  PubMed  CAS  Google Scholar 

  90. AbouEzzeddine OF, Kane GC, Rodeheffer RJ, Chen HH, Saenger AK, Scott CG, et al. Abstract 17646: plasma levels of ST2 in the community: ST2 is associated with increased risk of incident heart failure and mortality but not with altered ventricular function. Circulation. 2012;126(21 Supplement):A17646.

    Google Scholar 

  91. Manzano-Fernandez S, Januzzi JL, Pastor-Perez FJ, Bonaque-Gonzalez JC, Boronat-Garcia M, Pascual-Figal DA, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122(3):158–66. doi:10.1159/000338800.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

George Karayannis declares that he has no conflict of interest.

Filippos Triposkiadis declares that he has no conflict of interest.

John Skoularigis declares that he has no conflict of interest.

Panagiotis Georgoulias declares that he has no conflict of interest.

Javed Butler has received compensation from BG Medicine for service as a consultant.

Gregory Giamouzis declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Giamouzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karayannis, G., Triposkiadis, F., Skoularigis, J. et al. The Emerging Role of Galectin-3 and ST2 in Heart Failure: Practical Considerations and Pitfalls Using Novel Biomarkers. Curr Heart Fail Rep 10, 441–449 (2013). https://doi.org/10.1007/s11897-013-0169-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0169-1

Keywords

Navigation