Skip to main content

Advertisement

Log in

Circulating Biomarkers in Patients with Heart Failure and Preserved Ejection Fraction

  • Pathophysiology of Myocardial Failure (IS Anand and M Sarraf, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Patients with heart failure with preserved ejection fraction (HF-PEF) comprise a growing proportion of the overall HF burden. The pathophysiology of HF-PEF is complex, and relates to the interplay between cardiac risk factors (notably diabetes/insulin resistance, hypertension), systemic inflammation, and comorbid medical illness (e.g. chronic kidney disease) that conspire to promote endothelial dysfunction, ventricular-vascular stiffening, and diastolic dysfunction. Efficient diagnosis and optimal therapy remain challenging in this population. Imaging, electrocardiographic, and circulating biomarkers, as well as pharmacogenetics, may help to facilitate HF diagnosis, stratify risk, and individualize therapy. In this review, we focus on established and emerging circulating biomarkers in HF-PE, including circulating biomarkers of myocyte stress, myocyte injury, renal function, systemic inflammation, and fibrosis. Such markers have contributed to better understanding of the pathophysiologic mechanisms relevant to HF-PEF, and may eventually help to facilitate more effective and personalized management of this syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Senni M, Redfield MM. Heart failure with preserved systolic function. A different natural history? J Am Coll Cardiol. 2001;38:1277–82.

    PubMed  CAS  Google Scholar 

  2. •• Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32:670–9. The reader may refer to this excellent review for more details on the pathophysiology, diagnosis and potential treatments of HF-PEF.

    PubMed  Google Scholar 

  3. Sanderson JE. Heart failure with a normal ejection fraction. Heart. 2007;93:155–8.

    PubMed  CAS  Google Scholar 

  4. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation. 2011;123:2006–13. discussion 14.

    PubMed  Google Scholar 

  5. De Keulenaer GW, Brutsaert DL. Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation. 2011;123:1996–2004. discussion 5.

    PubMed  Google Scholar 

  6. Smith GL, Masoudi FA, Vaccarino V, Radford MJ, Krumholz HM. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline. J Am Coll Cardiol. 2003;41:1510–8.

    PubMed  Google Scholar 

  7. Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–16.

    PubMed  CAS  Google Scholar 

  8. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. New Engl J Med. 2006;355:251–9.

    PubMed  CAS  Google Scholar 

  9. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. New Engl J Med. 2006;355:260–9.

    PubMed  CAS  Google Scholar 

  10. Gupta DK, Shah AM, Castagno D, et al. Heart Failure with Preserved Ejection Fraction in African-Americans - The Atherosclerosis Risk in Communities (ARIC) Study. JACC Heart Fail. 2013;1:156–63.

    PubMed  Google Scholar 

  11. Solomon SD, Anavekar N, Skali H, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112:3738–44.

    PubMed  Google Scholar 

  12. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 2012;33:1750–7.

  13. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.

    PubMed  Google Scholar 

  14. Fiuzat M, O'Connor CM, Gueyffier F, et al. Biomarker-guided therapies in heart failure: a forum for unified strategies. J Card Fail. 2013;19:592–9.

    PubMed  Google Scholar 

  15. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. New Engl J Med. 2004;350:1953–9.

    PubMed  CAS  Google Scholar 

  16. Palmer SC, Yandle TG, Nicholls MG, Frampton CM, Richards AM. Regional clearance of amino-terminal pro-brain natriuretic peptide from human plasma. Eur J Heart Fail. 2009;11:832–9.

    PubMed  CAS  Google Scholar 

  17. Maisel AS, McCord J, Nowak RM, et al. Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol. 2003;41:2010–7.

    PubMed  Google Scholar 

  18. Desai AS, Toto R, Jarolim P, et al. Association between cardiac biomarkers and the development of ESRD in patients with type 2 diabetes mellitus, anemia, and CKD. Am J Kidney Dis. 2011;58:717–28.

    PubMed  CAS  Google Scholar 

  19. McMurray JJ, Uno H, Jarolim P, et al. Predictors of fatal and nonfatal cardiovascular events in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia: an analysis of the Trial to Reduce cardiovascular Events with Aranesp (darbepoetin-alfa) Therapy (TREAT). Am Heart J. 2011;162:748–55 e3.

    PubMed  Google Scholar 

  20. Bettencourt P, Azevedo A, Pimenta J, Frioes F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110:2168–74.

    PubMed  CAS  Google Scholar 

  21. Dokainish H, Zoghbi WA, Lakkis NM, et al. Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol. 2005;45:1223–6.

    PubMed  CAS  Google Scholar 

  22. Mega JL, Morrow DA, De Lemos JA, et al. B-type natriuretic peptide at presentation and prognosis in patients with ST-segment elevation myocardial infarction: an ENTIRE-TIMI-23 substudy. J Am Coll Cardiol. 2004;44:335–9.

    PubMed  CAS  Google Scholar 

  23. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786–92.

    PubMed  CAS  Google Scholar 

  24. Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R. N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med. 2005;352:666–75.

    PubMed  CAS  Google Scholar 

  25. Yan RT, White M, Yan AT, et al. Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in patients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Am J Cardiol. 2005;96:698–704.

    PubMed  CAS  Google Scholar 

  26. Masson S, Latini R, Anand IS, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol. 2008;52:997–1003.

    PubMed  CAS  Google Scholar 

  27. Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127:500–7. discussion 8.

    PubMed  Google Scholar 

  28. Desai AS. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are not useful in heart failure management: the art of medicine remains long. Circulation. 2013;127:509–16. discussion 16.

    PubMed  Google Scholar 

  29. Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011;4:44–52.

    PubMed  Google Scholar 

  30. de Denus S, Lavoie J, Ducharme A, et al. Differences in biomarkers in patients with heart failure with a reduced vs a preserved left ventricular ejection fraction. Can J Cardiol. 2012;28:62–8.

    PubMed  Google Scholar 

  31. O'Donoghue M, Kenney P, Oestreicher E, et al. Usefulness of aminoterminal pro-brain natriuretic peptide testing for the diagnostic and prognostic evaluation of dyspneic patients with diabetes mellitus seen in the emergency department (from the PRIDE Study). Am J Cardiol. 2007;100:1336–40.

    PubMed  Google Scholar 

  32. • Bishu K, Deswal A, Chen HH, et al. Biomarkers in acutely decompensated heart failure with preserved or reduced ejection fraction. Am Heart J. 2012;164:763–70 e3. Despite the relatively small number of patients, this study offers an interesting overview of circulating biomarkers in acute decompensated HF, comparing profiles between patients with HF-REF and those with preserved EF.

    PubMed  CAS  Google Scholar 

  33. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.

    PubMed  Google Scholar 

  34. Jeevanantham V, Shrivastava R, Nannapaneni S, et al. Elevated B-type natriuretic peptide level: use with caution in patients with multiple co-morbidities and presenting with dyspnea. Indian Heart J. 2007;59:64–8.

    PubMed  Google Scholar 

  35. Carlsen CM, Bay M, Kirk V, Gotze JP, Kober L, Nielsen OW. Prevalence and prognosis of heart failure with preserved ejection fraction and elevated N-terminal pro brain natriuretic peptide: a 10-year analysis from the Copenhagen Hospital Heart Failure Study. Eur J Heart Fail. 2012;14:240–7.

    PubMed  CAS  Google Scholar 

  36. Cleland JG, Taylor J, Freemantle N, Goode KM, Rigby AS, Tendera M. Relationship between plasma concentrations of N-terminal pro brain natriuretic peptide and the characteristics and outcome of patients with a clinical diagnosis of diastolic heart failure: a report from the PEP-CHF study. Eur J Heart Fail. 2012;14:487–94.

    PubMed  CAS  Google Scholar 

  37. •• Anand IS, Rector TS, Cleland JG, et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE trial. Circ Heart Fail. 2011;4:569–77. Using data from the largest clinical trial of HF-PEF published to this date, the authors present unexpected, hypothesis generating results on the use of NT-proBNP to predict therapeutic benefits in HF-PEF.

    PubMed  CAS  Google Scholar 

  38. Maeder MT, Rickenbacher P, Rickli H, et al. N-terminal pro brain natriuretic peptide-guided management in patients with heart failure and preserved ejection fraction: findings from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF). Eur J Heart Fail 2013.

  39. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation. 2003;108:1395–403.

    PubMed  Google Scholar 

  40. Kuster GM, Kotlyar E, Rude MK, et al. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation. 2005;111:420–7.

    PubMed  CAS  Google Scholar 

  41. Lopez B, Gonzalez A, Varo N, Laviades C, Querejeta R, Diez J. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension. 2001;38:1222–6.

    PubMed  CAS  Google Scholar 

  42. Nishikawa N, Yamamoto K, Sakata Y, et al. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res. 2003;57:766–74.

    PubMed  CAS  Google Scholar 

  43. Kotlyar E, Vita JA, Winter MR, et al. The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J Card Fail. 2006;12:122–7.

    PubMed  CAS  Google Scholar 

  44. Robert V, Silvestre JS, Charlemagne D, et al. Biological determinants of aldosterone-induced cardiac fibrosis in rats. Hypertension. 1995;26:971–8.

    PubMed  CAS  Google Scholar 

  45. Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645–54.

    PubMed  Google Scholar 

  46. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    PubMed  CAS  Google Scholar 

  47. Querejeta R, Lopez B, Gonzalez A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110:1263–8.

    PubMed  CAS  Google Scholar 

  48. Querejeta R, Varo N, Lopez B, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101:1729–35.

    PubMed  CAS  Google Scholar 

  49. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation. 1991;83:1771–9.

    PubMed  CAS  Google Scholar 

  50. Diez J, Laviades C, Mayor G, Gil MJ, Monreal I. Increased serum concentrations of procollagen peptides in essential hypertension. Relation to cardiac alterations. Circulation. 1995;91:1450–6.

    PubMed  CAS  Google Scholar 

  51. Gonzalez A, Lopez B, Querejeta R, Zubillaga E, Echeverria T, Diez J. Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension. 2010;55:1418–24.

    PubMed  CAS  Google Scholar 

  52. •• Zile MR, Desantis SM, Baicu CF, et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail. 2011;4:246–56. In this publication, the authors propose an intersting multimarker approach to identify patients who will develop LVH and patients with LVH who will develop " diastolic heart failure". They have measured plasma concentrations of 17 biomarkers, many of which are discussed in our review.

    PubMed  CAS  Google Scholar 

  53. Barasch E, Gottdiener JS, Aurigemma G, et al. Association between elevated fibrosis markers and heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2009;2:303–10.

    PubMed  CAS  Google Scholar 

  54. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006;48:89–96.

    PubMed  CAS  Google Scholar 

  55. Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    PubMed  Google Scholar 

  56. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006;113:2089–96.

    PubMed  CAS  Google Scholar 

  57. Frantz S, Stork S, Michels K, et al. Tissue inhibitor of metalloproteinases levels in patients with chronic heart failure: an independent predictor of mortality. Eur J Heart Fail. 2008;10:388–95.

    PubMed  CAS  Google Scholar 

  58. Collier P, Watson CJ, Voon V, et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13:1087–95.

    PubMed  CAS  Google Scholar 

  59. Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11:191–7.

    PubMed  CAS  Google Scholar 

  60. • Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011;4:561–8. The authors present interesting data on the predictive value of peripheral collagen turnover markers in the I-PRESERVE clinical trial.

    PubMed  CAS  Google Scholar 

  61. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Cardiol. 1993;71:12A–6A.

    PubMed  CAS  Google Scholar 

  62. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.

    PubMed  CAS  Google Scholar 

  63. Silvestre JS, Heymes C, Oubenaissa A, et al. Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation. 1999;99:2694–701.

    PubMed  CAS  Google Scholar 

  64. Lacolley P, Safar ME, Lucet B, Ledudal K, Labat C, Benetos A. Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J Am Coll Cardiol. 2001;37:662–7.

    PubMed  CAS  Google Scholar 

  65. Ohtani T, Ohta M, Yamamoto K, et al. Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: Beneficial effects of mineralocorticoid receptor blocker. Am J Physiol Regul Integr Comp Physiol. 2007;292:R946–54.

    PubMed  CAS  Google Scholar 

  66. Mak GJ, Ledwidge MT, Watson CJ, et al. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J Am Coll Cardiol. 2009;54:1674–82.

    PubMed  CAS  Google Scholar 

  67. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–6.

    PubMed  CAS  Google Scholar 

  68. Desai AS, Lewis EF, Li R, et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am Heart J. 2011;162:966–72.e10.

    PubMed  CAS  Google Scholar 

  69. McCullough PA, Olobatoke A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 2011;12:200–10.

    PubMed  Google Scholar 

  70. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.

    PubMed  CAS  Google Scholar 

  71. Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75.

    PubMed  CAS  Google Scholar 

  72. Felker GM, Fiuzat M, Shaw LK, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72–8.

    PubMed  CAS  Google Scholar 

  73. Al-Ahmad A, Rand WM, Manjunath G, et al. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38:955–62.

    PubMed  CAS  Google Scholar 

  74. Hillege HL, Nitsch D, Pfeffer MA, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113:671–8.

    PubMed  Google Scholar 

  75. Jones RC, Francis GS, Lauer MS. Predictors of mortality in patients with heart failure and preserved systolic function in the Digitalis Investigation Group trial. J Am Coll Cardiol. 2004;44:1025–9.

    PubMed  Google Scholar 

  76. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000;35:681–9.

    PubMed  CAS  Google Scholar 

  77. •• McAlister FA, Ezekowitz J, Tarantini L, et al. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: impact of the new Chronic Kidney Disease-Epidemiology Collaboration Group formula. Circ Heart Fail. 2012;5:309–14. In this large meta-analysis, the impact of renal function on outcomes is confirmed but the newer CKD-EPI equation (over the MDRD equation) to estimate GFR appears to enhance risk stratification in the HF population.

    PubMed  Google Scholar 

  78. Komajda M, Carson PE, Hetzel S, et al. Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE). Circ Heart Fail. 2011;4:27–35.

    PubMed  CAS  Google Scholar 

  79. •• Brouwers FP, de Boer RA, van der Harst P, et al. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J. 2013;34:1424–31. The authors here present important information on the epidemiology of HF, using data from a large cohort of 8,592 subjects. They conclude that a history of atrial fibrillation, increased urinary albumin excretion (UAE), and cystatin C were significantly more associated with the risk for HF-PEF, but not for HF-REF. We have highlighted the importance of the two renal biomarkers stated in their conclusion and increasingly studied in the past few years.

    PubMed  CAS  Google Scholar 

  80. Moran A, Katz R, Smith NL, et al. Cystatin C concentration as a predictor of systolic and diastolic heart failure. J Card Fail. 2008;14:19–26.

    PubMed  CAS  Google Scholar 

  81. Lassus J, Harjola VP, Sund R, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28:1841–7.

    PubMed  CAS  Google Scholar 

  82. Dupont M, Wu Y, Hazen SL, Tang WH. Cystatin C identifies patients with stable chronic heart failure at increased risk for adverse cardiovascular events. Circ Heart Fail. 2012;5:602–9.

    PubMed  CAS  Google Scholar 

  83. Carrasco-Sanchez FJ, Galisteo-Almeda L, Paez-Rubio I, et al. Prognostic value of cystatin C on admission in heart failure with preserved ejection fraction. J Card Fail. 2011;17:31–8.

    PubMed  CAS  Google Scholar 

  84. Jackson CE, Solomon SD, Gerstein HC, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.

    PubMed  CAS  Google Scholar 

  85. Latini R, Masson S, Anand IS, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116:1242–9.

    PubMed  CAS  Google Scholar 

  86. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O'Connor CM, Felker GM. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56:1071–8.

    PubMed  CAS  Google Scholar 

  87. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718–25.

    PubMed  CAS  Google Scholar 

  88. Masson S, Anand I, Favero C, et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation. 2012;125:280–8.

    PubMed  CAS  Google Scholar 

  89. •• Santhanakrishnan R, Chong JP, Ng TP, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012;14:1338–47. A very interesting study where circulating levels of GDF15, ST2, hsTnT, and NT-proBNP, as well as their combinations, were compared between three groups (HF-REF, HF-PEF and controls). The authors conclude that there is a prominent role for myocardial injury (hsTnT) with increased wall stress (NT-proBNP) in HF-REF; whereas HF-PEF is characterized by systemic inflammation (GDF15).

    PubMed  CAS  Google Scholar 

  90. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–6.

    PubMed  Google Scholar 

  91. Weinberg EO. ST2 protein in heart disease: from discovery to mechanisms and prognostic value. Biomark Med. 2009;3:495–511.

    PubMed  CAS  Google Scholar 

  92. Januzzi Jr JL. ST2 as a Cardiovascular Risk Biomarker: From the Bench to the Bedside. J Cardiovasc Transl Res. 2013;6:493–500.

    PubMed  Google Scholar 

  93. Bartunek J, Delrue L, Van Durme F, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52:2166–74.

    PubMed  CAS  Google Scholar 

  94. Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109:2186–90.

    PubMed  CAS  Google Scholar 

  95. Januzzi Jr JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    PubMed  CAS  Google Scholar 

  96. Manzano-Fernandez S, Mueller T, Pascual-Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–67.

    PubMed  CAS  Google Scholar 

  97. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    PubMed  Google Scholar 

  98. Lam CS, Roger VL, Rodeheffer RJ, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115:1982–90.

    PubMed  Google Scholar 

  99. Borlaug BA, Melenovsky V, Redfield MM, et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.

    PubMed  Google Scholar 

  100. Frank D, Kuhn C, Brors B, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension. 2008;51:309–18.

    PubMed  CAS  Google Scholar 

  101. Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116:1540–8.

    PubMed  Google Scholar 

  102. Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31:203–10.

    PubMed  CAS  Google Scholar 

  103. Kempf T, Sinning JM, Quint A, et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ Cardiovasc Genet. 2009;2:286–92.

    PubMed  CAS  Google Scholar 

  104. Lind L, Wallentin L, Kempf T, et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur Heart J. 2009;30:2346–53.

    PubMed  CAS  Google Scholar 

  105. Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.

    PubMed  CAS  Google Scholar 

  106. Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95.

    PubMed  CAS  Google Scholar 

  107. Zile MR, Baicu CF. Biomarkers of diastolic dysfunction and myocardial fibrosis: application to heart failure with a preserved ejection fraction. J Cardiovasc Transl Res. 2013;6:501–15.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Eileen O’Meara has received compensation from Novartis, Servier, and Pfizer for service as a consultant, and is supported through grants from Servier and Johnson & Johnson.

Simon de Denus has received compensation from Servier for service as a consultant, is supported through grants from Pfizer, AstraZeneca, Roche, and Novartis, and has received payment for lectures including service on speaker bureaus from Pfizer.

Jean-Lucien Rouleau declares that he has no conflict of interest.

Akshay Desai has received compensation from Novartis, Boston Scientific, and Reata for service as a consultant; has received compensation from Rindler Morgan/Coverys for providing expert testimony; is supported through a grant from AtCor Medical, Inc.; and has received reimbursement for travel/accommodations/meeting expenses from Amgen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen O’Meara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Meara, E., de Denus, S., Rouleau, JL. et al. Circulating Biomarkers in Patients with Heart Failure and Preserved Ejection Fraction. Curr Heart Fail Rep 10, 350–358 (2013). https://doi.org/10.1007/s11897-013-0160-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0160-x

Keywords

Navigation